高中人教A全册数学必修5教案2.3等差数列的前n项和.doc
《高中人教A全册数学必修5教案2.3等差数列的前n项和.doc》由会员分享,可在线阅读,更多相关《高中人教A全册数学必修5教案2.3等差数列的前n项和.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料23 等差数列的前n项和(一)教学目标1知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。2. 过程与方法:通过对历史有名的高斯求和的介绍,引导学生发现等差数列的第k项与倒数第k项的和等于首项与末项的和这个规律;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。3情态与价值:培养学生利用学过的知识解决与现实有关的问题的能力。(二)教学重、难点重
2、点:探索并掌握等差数列的前n项和公式;学会用公式解决一些实际问题,体会等差数列的前n项和与二次函数之间的联系。难点:等差数列前n项和公式推导思路的获得,灵活应用等差数列前n项公式解决一些简单的有关问题(三)学法与教学用具学法:讲练结合教学用具:投影仪(四)教学设想创设情景 等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的问题。在200多年前,历史上最伟大的数学家之一,被誉为“数学王子”的高斯就曾经上演了迅速求出等差数列这么一出好戏。那时,高斯的数学老师提出了下面的问题:1+2+3+100=?当时,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速
3、算出了正确答案:(1+100)+(2+99)+(50+51)=10150=5050高斯的算法实际上解决了求等差数列1,2,3,n,前100项的和的问题。 今天我们就来学习如何去求等差数列的前n项的和。探索研究 我们先来看看人们由高斯求前100个正整数的方法得到了哪些启发。人们从高斯那里受到启发,于是用下面的这个方法计算1,2,3,n,的前n项的和:由 1 + 2 + + n-1 + n n + n-1 + + 2 + 1 (n+1)+(n+1)+ +(n+1)+(n+1)可知上面这种加法叫“倒序相加法” 请同学们观察思考一下:高斯的算法妙在哪里? 高斯的算法很巧妙,他发现了整个数列的第k项与倒
4、数第k项的和与首项与尾项的和是相等的这个规律并且把这个规律用于求和中。这种方法是可以推广到求一般等差数列的前n项和的。等差数列求和公式的教学 一般地,称为数列的前n项的和,用表示,即1、 思考:受高斯的启示,我们这里可以用什么方法去求和呢?思考后知道,也可以用“倒序相加法”进行求和。我们用两种方法表示: 由+,得 由此得到等差数列的前n项和的公式对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。2、 除此之外,等差数列还有其他方法(读基础教好学生要介绍)当然,对于等差数列求和公式的推导,也可以有其他的推导途径。例如: = = = = 这两个公式是可以相互转化的
5、。把代入中,就可以得到引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次函数”,可以与二次函数进行比较。这两个公式的共同点都是知道和n,不同点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。公式运用(课本52页练习1、2)1、 根据下列各题中的条件,求相应的等差数列的前n项和S. 例题分析例1、2000年11月14日教育部下发了关于在中小学实施“校校通”工程的统治.某市据此提出了实施“校校通”工程的总
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中人 数学 必修 教案 2.3 等差数列
限制150内