高中人教A全册数学必修4学案第3章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式.doc
《高中人教A全册数学必修4学案第3章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式.doc》由会员分享,可在线阅读,更多相关《高中人教A全册数学必修4学案第3章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料3. 1.2 两角和与差的正弦、余弦、正切公式三维目标1.在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.重点难点教学重点
2、:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.教学过程1、提出问题还记得两角差的余弦公式吗?请写出。在公式C(-)中,角是任意角,请思考角-中换成角-是否可以?此时观察角+与-(-)之间的联系,如何利用公式C(-)来推导cos(+)=?结论1、cos(+)=coscos-sinsin我们称以上等式为两角和的余弦公式,记作C(+).分析观察C(+)的结构有何特征?在公式C(-)、C(+)的基础上能否推导sin(+)=?sin(-)=?结论2、因此我们得到两角和与差的正弦公式,分别简记为S(+)、S(-).sin(+)=sincos+cossin,si
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中人 数学 必修 学案第 三角 恒等 变换 3.1 正弦 余弦 正切 公式
限制150内