高三数学第二轮专题讲座复习等差数列等比数列性质的灵活运用.doc
《高三数学第二轮专题讲座复习等差数列等比数列性质的灵活运用.doc》由会员分享,可在线阅读,更多相关《高三数学第二轮专题讲座复习等差数列等比数列性质的灵活运用.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料高三数学第二轮专题讲座复习:等差数列、等比数列性质的灵活运用 高考要求 等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳 1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用 2 在应用性质时要注意性质的前提条件,有时需要进行适当变形 3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基
2、本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 典型题例示范讲解 例1已知函数f(x)= (x2) (1)求f(x)的反函数f-1(x);(2)设a1=1, =f-1(an)(nN*),求an;(3)设Sn=a12+a22+an2,bn=Sn+1Sn是否存在最小正整数m,使得对任意nN*,有bn成立?若存在,求出m的值;若不存在,说明理由 命题意图 本题是一道与函数、数列有关的综合性题目,考查学生的逻辑分析能力 知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,
3、结构巧妙,形式新颖,是一道精致的综合题 错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列为桥梁求an,不易突破 技巧与方法 (2)问由式子得=4,构造等差数列,从而求得an,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想 解 (1)设y=,x0)(2),是公差为4的等差数列,a1=1, =+4(n1)=4n3,an0,an= (3)bn=Sn+1Sn=an+12=,由bn,设g(n)= ,g(n)= 在nN*上是减函数,g(n)的最大值是g(1)=5,m5,存在最小正整数m=6,使对任意nN*有bn成立 例2设等比数列an的各项均为正数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二轮 专题讲座 复习 等差数列 等比数列 性质 灵活 运用
限制150内