必修2全册导学案第4章圆与方程.doc





《必修2全册导学案第4章圆与方程.doc》由会员分享,可在线阅读,更多相关《必修2全册导学案第4章圆与方程.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料4.1圆的标准方程 学习目标 1. 掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;2. 会用待定系数法求圆的标准方程. 学习过程 一、课前准备(预习教材P124 P127,找出疑惑之处)1.在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?2.什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?二、新课导学 学习探究新知:圆心为,半径为的圆的方程叫做圆的标准方程.特殊:若圆心为坐标原点,这时,则圆的方程就是探究:确定圆的标准方程的基本要素
2、? 典型例题例 写出圆心为,半径长为5的圆的方程,并判断点是否在这个圆上.小结:点与圆的关系的判断方法:,点在圆外;=,点在圆上;,点在圆内.变式:的三个顶点的坐标是,求它的外接圆的方程反思:1.确定圆的方程的主要方法是待定系数法,即列出关于的方程组,求或直接求出圆心和半径.2.待定系数法求圆的步骤:(1)根据题意设所求的圆的标准方程为;(2)根据已知条件,建立关于的方程组;(3)解方程组,求出的值,并代入所设的方程,得到圆的方程.例2 已知圆经过点和,且圆心在直线上,求此圆的标准方程. 动手试试练1. 已知圆经过点,圆心在点的圆的标准方程.练2.求以为圆心,并且和直线相切的圆的方程三、总结提
3、升 学习小结一方法规纳利用圆的标准方程能直接求出圆心和半径.比较点到圆心的距离与半径的大小,能得出点与圆的位置关系.借助弦心距、弦、半径之间的关系计算时,可大大化简计算的过程与难度.二圆的标准方程的两种求法:根据题设条件,列出关于的方程组,解方程组得到得值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知,则以为直径的圆的方程( ).A BC D2. 点与圆的的位置关系是( ).A在圆
4、外 B在圆内 C在圆上 D不确定3. 圆心在直线上的圆与轴交于两点,则圆的方程为( ). ABCD4. 圆关于关于原点对称的圆的方程 5. 过点向圆所引的切线方程 . 课后作业 1. 已知圆的圆心在直线上,且与直线切于点,求圆的标准方程.2. 已知圆 求:过点的切线方程. 过点的切线方程4.1圆的一般方程 学习目标 1. 在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径掌握方程表示圆的条件;2能通过配方等手段,把圆的一般方程化为圆的标准方程能用待定系数法求圆的方程;3培养学生探索发现及分析解决问题的实际能力 学习过程 一、课前准备(预习教材P127 P
5、130,找出疑惑之处)1已知圆的圆心为,半径为,则圆的标准方程 ,若圆心为坐标原点上,则圆的方程就是 2求过三点的圆的方程.二、新课导学 学习探究问题1方程表示什么图形?方程表示什么图形?问题2方程在什么条件下表示圆?新知:方程表示的轨迹.当时,表示以为圆心,为半径的圆;当时,方程只有实数解,即只表示一个点(-,-);(3)当时,方程没有实数解,因而它不表示任何图形小结:方程表示的曲线不一定是圆 只有当时,它表示的曲线才是圆,形如的方程称为圆的一般方程思考:1圆的一般方程的特点?2圆的标准方程与一般方程的区别? 典型例题例1 判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.
6、;.例2 已知线段的端点的坐标是,端点在圆上运动,求线段的中点的轨迹方程. 动手试试练1. 求过三点的圆的方程,并求这个圆的半径长和圆心坐标. 练2. 已知一个圆的直径端点是,试求此圆的方程. 三、总结提升 学习小结1方程中含有三个参变数,因此必须具备三个独立的条件,才能确定一个圆,还要注意圆的一般式方程与它的标准方程的转化.2待定系数法是数学中常用的一种方法,在以前也已运用过.例如:由已知条件确定二次函数,利用根与系数的关系确定一元二次方程的系数等.这种方法在求圆的方程有着广泛的运用,要求熟练掌握.3 使用待定系数法的一般步骤:根据题意,选择标准方程或一般方程;根据条件列出关于或的方程组;解
7、出或,代入标准方程或一般方程. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 若方程表示一个圆,则有( ).A B. C D2. 圆的圆心和半径分别为( ). ABCD3. 动圆的圆心轨迹是( ). A BC D4. 过点,圆心在轴上的圆的方程是 .5. 圆的点到直线的距离的最大值为 . 课后作业 1. 设直线和圆相交于,求弦的垂直平分线方程. 2. 求经过点且与直线相切于点的圆的方程. 4.2直线、圆的位置关系 学习目标 1理解直线与圆的几种位置关系;2利用平面直角坐标系中点到直线的距离
8、公式求圆心到直线的距离;3会用点到直线的距离来判断直线与圆的位置关系 学习过程 一、课前准备(预习教材P133 P136,找出疑惑之处)1把圆的标准方程整理为圆的一般方程 .把整理为圆的标准方程为 .2一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70处,受影响的范围是半径为30的圆形区域.已知港口位于台风中心正北40处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?3直线与圆的位置关系有哪几种呢?4我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢? 二、新课导学 学习探究新知1:设直线的方程为,圆的方程为,圆的半径为,圆心到直线
9、的距离为,则判别直线与圆的位置关系的依据有以下几点:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交;新知2:如果直线的方程为,圆的方程为,将直线方程代入圆的方程,消去得到的一元二次方程式,那么:当时,直线与圆没有公共点;当时,直线与圆有且只有一个公共点;当时,直线与圆有两个不同的公共点; 典型例题例1 用两种方法来判断直线与圆的位置关系.例2 如图2,已知直线过点且和圆相交,截得弦长为,求的方程变式:求直线截圆 所得的弦长. 动手试试练1. 直线与圆相切,求r的值. 练2. 求圆心在直线上,且与两坐标轴相切的圆的方程. 三、总结提升 学习小结判断直线与圆的位置关系有两种方法 判断直
10、线与圆的方程组是否有解a.有解,直线与圆有公共点.有一组则相切;有两组,则相交b无解,则直线与圆相离 如果直线的方程为,圆的方程为,则圆心到直线的距离.如果 直线与圆相交;如果直线与圆相切;如果直线与圆相离. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 直线与圆A相切 B相离 C过圆心 D相交不过圆心2. 若直线与圆相切,则的值为( ).A0或2 B2 C D无解3 已知直线过点,当直线与圆有两个交点时,其斜率的取值范围是( ).A BC D4. 过点的圆的切线方程为 .5. 圆上的点到
11、直线的距离的最大值为 . 课后作业 1. 圆上到直线的距离为的点的坐标. 2. 若直线与圆.相交;相切;相离;分别求实数的取值范围. 4.2圆与圆的位置关系 学习目标 1理解圆与圆的位置的种类;2利用平面直角坐标系中两点间的距离公式求两圆的连心线长;3会用连心线长判断两圆的位置关系 学习过程 一、课前准备(预习教材P136 P137,找出疑惑之处)1直线与圆的位置关系 , , .2直线截圆所得的弦长 .3圆与圆的位置关系有几种,哪几种?4. 设圆两圆的圆心距设为d.当时,两圆 当时,两圆 当 时,两圆 当时,两圆 当时,两圆 二、新课导学 学习探究探究:如何根据圆的方程,判断两圆的位置关系?新
12、课:两圆的位置关系利用圆的方程来判断.通常是通过解方程或不等式和方法加以解决 典型例题例1 已知圆,圆,试判断圆与圆的关系?变式:若将这两个圆的方程相减,你发现了什么?例2圆的方程是: ,圆的方程是:,为何值时两圆相切;相交;相离;内含. 动手试试练1. 已知两圆与问取何值时,两圆相切. 练2. 求经过点M(2,-2),且与圆与交点的圆的方程三、总结提升 学习小结1判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定.(2)依据连心线的长与两半径长的和或两半径的差的绝对值的大小关系.2对于求切线问题,注意不要漏解,主要是根据几何图形来判断切线的条数.3一般地,两圆的公切线条
13、数为:相内切时,有一条公切线;相外切时,有三条公切线;相交时,有两条公切线;相离时,有四条公切线.4求两圆的公共弦所在直线方程,就是使表示圆的两个方程相减消去二次项即可得到. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知,则两圆与的位置关系是( ). A外切 B相交 C外离 D内含2. 两圆与的公共弦长( ). A B1 C D23. 两圆与的公切线有( ). A1条 B2条 C4条 D3条4. 两圆相交于两点,则直线的方程是 .5. 两圆和的外公切线方程 . 课后作业 1. 已知圆
14、C与圆相外切,并且与直线相切于点,求圆C的方程. 2. 求过两圆和圆的交点,且圆心在直线上的圆的方程. 4.2.3直线与圆的方程的应用 学习目标 1理解直线与圆的位置关系的几何性质;2利用平面直角坐标系解决直线与圆的位置关系;3会用“数形结合”的数学思想解决问题 学习过程 一、课前准备(预习教材P138 P140,找出疑惑之处)1圆与圆的位置关系有 .2圆和圆的位置关系为 .3过两圆和的交点的直线方程 .二、新课导学 学习探究1直线方程有几种形式? 分别是?2圆的方程有几种形式?分别是哪些?3求圆的方程时,什么条件下,用标准方程?什么条件下用一般方程?4直线与圆的方程在生产.生活实践中有广泛的
15、应用.想想身边有哪些呢? 典型例题例1 已知某圆拱形桥.这个圆拱跨度,拱高,建造时每间隔4m需要用一根支柱支撑,求支柱的高度(精确0.01m)变式:赵州桥的跨度是37.4m.圆拱高约为7.2m.求这座圆拱桥的拱圆的方程 例2 已知内接于圆的四边形的对角线互相垂直,求证圆心到一边距离等于这条边所对这条边长的一半. 动手试试练1. 求出以曲线与的交点为顶点的多边形的面积. 练2. 讨论直线与曲线的交点个数.三、总结提升 学习小结1用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆,然后通过对坐标和方程的代数运算,把代数结果“翻译”成几何关系,得到几何问题的结论,这就是用坐标法解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 全册导学案第 方程

限制150内