《高三数学第二轮专题讲座复习充要条件的理解及判定方法.doc》由会员分享,可在线阅读,更多相关《高三数学第二轮专题讲座复习充要条件的理解及判定方法.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料高三数学第二轮专题讲座复习:充要条件的理解及判定方法高考要求 充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系重难点归纳 (1)要理解“充分条件”“必要条件”的概念当“若p则q”形式的命题为真时,就记作pq,称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假(2)要理解“充要条件”的概念,对于符号“”要熟悉它的各种同义词语“等价于”,“当且仅当”,“必须并且只需”,“,反之也真”等(3)数学概念的定义具
2、有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质(4)从集合观点看,若AB,则A是B的充分条件,B是A的必要条件;若A=B,则A、B互为充要条件(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性)典型题例示范讲解 例1已知p|1|2,q:x22x+1m20(m0),若p是q的必要而不充分条件,求实数m的取值范围命题意图 本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性知识依托 本题解题的闪光点是利用等价命题对题目的文字表述
3、方式进行转化,使考生对充要条件的难理解变得简单明了错解分析 对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难技巧与方法 利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决解由题意知命题若p是q的必要而不充分条件的等价命题即逆否命题为p是q的充分不必要条件p:|1|2212132x10q:x22x+1m20x(1m)x(1+m)0 *p是q的充分不必要条件,不等式|1|2的解集是x22x+1m20(m0)解集的子集又m0不等式*的解集为1mx1+m,m9,实数m的取值范围是9,+例2已
4、知数列an的前n项Sn=pn+q(p0,p1),求数列an是等比数列的充要条件命题意图 本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性知识依托 以等比数列的判定为主线,使本题的闪光点在于抓住数列前n项和与通项之间的递推关系,严格利用定义去判定错解分析 因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明技巧与方法 由an=关系式去寻找an与an+1的比值,但同时要注意充分性的证明解a1=S1=p+q当n2时,an=SnSn1=pn1(p1)p0,p1,=p若an为等比数列,则=p=p,p0,p1=p+q,q=1这是an为等比数列的必要条件下面证明q=
5、1是an为等比数列的充分条件当q=1时,Sn=pn1(p0,p1),a1=S1=p1当n2时,an=SnSn1=pnpn1=pn1(p1)an=(p1)pn1 (p0,p1)=p为常数q=1时,数列an为等比数列即数列an是等比数列的充要条件为q=1例3已知关于x的实系数二次方程x2+ax+b=0有两个实数根、,证明|2且|2是2|a|4+b且|b|0即有4+b2a(4+b)又|b|44+b02|a|4+b(2)必要性由2|a|4+bf(2)0且f(x)的图象是开口向上的抛物线方程f(x)=0的两根,同在(2,2)内或无实根,是方程f(x)=0的实根,同在(2,2)内,即|2且|2例4 写出下
6、列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.解:(1)命题的否定:x、y都是奇数,则x+y不是偶数,为假命题.原命题的否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.(2)命题的否定:xy=0则x0且y0,为假命题.原命题的否命题:若xy0,则x0且y0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题.原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题.学生巩固练习 1函数f(x)=x|x+a|+b是奇函数的充要条件是( )Aab=0Ba+b
7、=0Ca=b Da2+b2=02 “a=1”是函数y=cos2axsin2ax的最小正周期为“”的( )A充分不必要条件B必要不充分条件C充要条件D既非充分条件也不是必要条件3 a=3是直线ax+2y+3a=0和直线3x+(a1)y=a7平行且不重合的_4命题A两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B曲线F(x,y)+G(x,y)=0(为常数)过点P(x0,y0),则A是B的_条件5设,是方程x2ax+b=0的两个实根,试分析a2且b1是两根、均大于1的什么条件?6已知数列an、bn满足bn=,求证数列an成等差数列的充要条件是数列bn也是等差数列参考答案1解析
8、若a2+b2=0,即a=b=0,此时f(x)=(x)|x+0|+0=x|x|=(x|x+0|+b)=(x|x+a|+b)=f(x)a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(x)=(x)|(x)+a|+b=f(x),则必有a=b=0,即a2+b2=0a2+b2=0是f(x)为奇函数的必要条件答案 D2解析若a=1,则y=cos2xsin2x=cos2x,此时y的最小正周期为故a=1是充分条件,反过来,由y=cos2axsin2ax=cos2ax故函数y的最小正周期为,则a=1,故a=1不是必要条件答案 A3解析当a=3时,直线l1:3x+2y+9=
9、0;直线l2:3x+2y+4=0l1与l2的A1A2=B1B2=11,而C1C2=941,即C1C2,a=3l1l2答案 充要条件4解析若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+G(x0,y0)=0,即F(x,y)+G(x,y)=0,过P(x0,y0);反之不成立答案充分不必要5解根据韦达定理得a=+,b=判定的条件是p:,结论是q:(注意p中a、b满足的前提是=a24b0)(1)由,得a=+2,b=1,qp(2)为证明pq,可以举出反例取=4,=,它满足a=+=4+2,b=4=21,但q不成立综上讨论可知a2,b1是1,1的必要但不充分条件6证明必要性设an成等差数列,公差为d,an成等差数列 从而bn+1bn=a1+nda1(n1) d=d为常数 故bn是等差数列,公差为d充分性:设bn是等差数列,公差为d,则bn=(n1)dbn(1+2+n)=a1+2a2+nanbn1(1+2+n1)=a1+2a2+(n1)an得nan=bn1从而得an+1an=d为常数,故an是等差数列综上所述,数列an成等差数列的充要条件是数列bn也是等差数列5
限制150内