高考数学一轮复习热点难点精讲精析2.4二次函数.doc
《高考数学一轮复习热点难点精讲精析2.4二次函数.doc》由会员分享,可在线阅读,更多相关《高考数学一轮复习热点难点精讲精析2.4二次函数.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料高考一轮复习热点难点精讲精析:2.4二次函数一、求二次函数的解析式1相关链接求二次函数解析式的方法及思路求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:2例题解析【例1】设二次函数f(x)满足f(x-2)=f(-x-2)且图象在y轴上的截距为1,在x轴上截得的线段长为求f(x)的解析式.【方法诠释】二次函数f(x)满足f(x+t)=f(t-x),则其对称轴方程为x=t;图象在x轴上截得的线段长度公式为|x1-x2|,本题可设f(x)的一般式,亦可设顶点式.解析:设f(x)的两零点分别为x1,x2,方法一:设f(x)=
2、ax2+bx+c,则由题知:c=1,且对称轴为x=-2.即b=4a.f(x)=ax2+4ax+1.b=4a=2函数f(x)的解析式为方法二:f(x-2)=f(-x-2),二次函数f(x)的对称轴为x=-2.设f(x)=a(x+2)2+b,且f(0)=1,4a+b=1.f(x)=a(x+2)2+1-4a=ax2+4ax+1,【方法指导】用待定系数法求二次函数的解析式:(1)设一般式是通法;(2)已知顶点(对称轴或最值),往往设顶点式;(3)已知图象与x轴的两交点,往往设两根式,若选用形式不当,引入的待定系数过多,会加大运算量.【例2】如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上、两点
3、,该抛物线的对称轴x=-1与x轴相交于点,且ABC90,求:(1)直线AB对应函数的解析式;(2)抛物线的解析式.【解析】(1)由已知及图形得:A(4,0),B(0,-4k),(-1,0),又CBA=BOC=90,OB2=COAO.(-4k)2=14, 又由图知k0, 所求直线的解析式为(2)设抛物线的解析式为y=ax2+bx+c,则解得所求抛物线的解析式为二、二次函数图象与性质的应用1相关链接求二次函数最值的类型及解法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 热点 难点 精讲精析 2.4 二次 函数
限制150内