高三数学第二轮专题讲座复习圆锥曲线综合题.doc
《高三数学第二轮专题讲座复习圆锥曲线综合题.doc》由会员分享,可在线阅读,更多相关《高三数学第二轮专题讲座复习圆锥曲线综合题.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料高三数学第二轮专题讲座复习:圆锥曲线综合题高考要求 圆锥曲线的综合问题包括 解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整 重难点归纳 解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的 (1)对于求曲线方程中
2、参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域 (2)对于圆锥曲线的最值问题,解法常有两种 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值 典型题例示范讲解 例1已知圆k过定点A(a,0)(a0),圆心k在抛物线C y2=2ax上运动,MN为圆k在y轴上截得的弦 (1)试问MN的长是否随圆心k的运动而变化?(2)当|OA|是|OM|与|ON|的等差中项时,抛物线C的准线与圆k有怎样的位置关系?命题意图 本题考查圆锥
3、曲线科内综合的知识及学生综合、灵活处理问题的能力 知识依托 弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识 错解分析 在判断d与R的关系时,x0的范围是学生容易忽略的 技巧与方法 对第(2)问,需将目标转化为判断d=x0+与R=的大小 解 (1)设圆心k(x0,y0),且y02=2ax0,圆k的半径R=|AK|=|MN|=2=2a(定值)弦MN的长不随圆心k的运动而变化 (2)设M(0,y1)、N(0,y2)在圆k (xx0)2+(yy0)2=x02+a2中,令x=0,得y22y0y+y02a2=0,y1y2=y02a2|OA|是|OM|与|ON|的等差中项 |OM|+|ON
4、|=|y1|+|y2|=2|OA|=2a 又|MN|=|y1y2|=2a, |y1|+|y2|=|y1y2|y1y20,因此y02a20,即2ax0a20 0x0 圆心k到抛物线准线距离d=x0+a,而圆k半径R=a 且上两式不能同时取等号,故圆k必与准线相交 例2如图,已知椭圆=1(2m5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A、B、C、D,设f(m)=|AB|CD|(1)求f(m)的解析式; (2)求f(m)的最值 命题意图 本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合 知识依托 直线与圆锥曲线的交点,韦达定理,根的
5、判别式,利用单调性求函数的最值 错解分析 在第(1)问中,要注意验证当2m5时,直线与椭圆恒有交点 技巧与方法 第(1)问中,若注意到xA,xD为一对相反数,则可迅速将|AB|CD|化简 第(2)问,利用函数的单调性求最值是常用方法 解 (1)设椭圆的半长轴、半短轴及半焦距依次为a、b、c,则a2=m,b2=m1,c2=a2b2=1椭圆的焦点为F1(1,0),F2(1,0) 故直线的方程为y=x+1,又椭圆的准线方程为x=,即x=m A(m,m+1),D(m,m+1)考虑方程组,消去y得 (m1)x2+m(x+1)2=m(m1)整理得 (2m1)x2+2mx+2mm2=0=4m24(2m1)(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二轮 专题讲座 复习 圆锥曲线 综合
限制150内