人教A数学必修三全册教案学案2.1.2系统抽样(教、学案).doc
《人教A数学必修三全册教案学案2.1.2系统抽样(教、学案).doc》由会员分享,可在线阅读,更多相关《人教A数学必修三全册教案学案2.1.2系统抽样(教、学案).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料2. 1.2系统抽样 【教学目标】: 1. 正确理解系统抽样的概念. 2. 掌握系统抽样的一般步骤. 【教学重难点】: 教学重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.教学难点:灵活应用系统抽样的方法解决统计问题. 【教学过程】: 复习回顾: 随机抽样有什么优缺点?答:优点是简单易行;缺点是当样本容量较大时工作量大且不易实现“搅拌均匀”.情境导入:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?新知探究: 一、系统抽样的定义: 一般地,要从容量为
2、N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此, 系统抽样又称等距抽样,这时间隔一般为k. (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,此编号基础上加上分段间隔的整倍数即为抽样编号. 练一练: (1)你能举几个系统抽样的例子吗? (2)下列抽样中不是系统抽样的是( ) A、从标有115号的15号的15个小
3、球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样 B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验 C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止 D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈解析:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。二、系统抽样的一般步骤:(1)采用随机抽样的方法将总体中的N个个编号。(2)将整体按编号进行分段,确定分段间隔k,k. (3)
4、在第一段用简单随机抽样确定起始个体的编号L(LN,Lk)。(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体 编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本。 【说明】(1)从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。(2)如果遇到不是整数的情况,可以先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除。【精讲精练】: 例1、某校高中三年级的295名学生已经编号为1,2,295,为了了解学生的学 习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取
5、,并写出过程。 解析:按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1个编号。 解:按照1:5的比例,应该抽取的样本容量为2955=59,我们把259名同学分成 59组,每组5人,第一组是编号为15的5名学生,第2组是编号为610的5名学生, 依次下去,59组是编号为291295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1k5),那么抽取的学生编号为k+5L(L=0,1,2,,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,288,293。 点评:注意分清分段间隔及分段数. 变式训练1、为了了解某大学一年级新生英语
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 数学 必修 三全册 教案 2.1 系统抽样
限制150内