[教案精品]新课标高中数学人教A版必修四全册教案2.5.1平面几何中的向量方法.doc
《[教案精品]新课标高中数学人教A版必修四全册教案2.5.1平面几何中的向量方法.doc》由会员分享,可在线阅读,更多相关《[教案精品]新课标高中数学人教A版必修四全册教案2.5.1平面几何中的向量方法.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料2.5.1平面几何中的向量方法教学目的:1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;3.让学生深刻理解向量在处理平面几何问题中的优越性. 教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.教学过程:一、复习引入:1. 两个向量的数量积:2. 平面两向量数量积的坐标表示: 3. 向量平行与垂直的判定: 4. 平面内两点间的距离公式: 5. 求模: 练习 教材P.10
2、6练习第1、2、3题.;教材P.107练习第1、2题.二、讲解新课:例1. 已知AC为O的一条直径,ABC为圆周角.求证:ABC90o.证明:设 例2. 如图,AD,BE,CF是ABC的三条高.求证: AD,BE,CF相交于一点.例3. 平行四边形是表示向量加法与减法的几何模型.如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?思考1:如果不用向量方法,你能证明上述结论吗? 思考2:运用向量方法解决平面几何问题可以分哪几个步骤?运用向量方法解决平面几何问题可以分哪几个步骤?“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.例4如图, ABCD中,点E、F分别是AD、DC边的中点,BE、 BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?课堂小结用向量方法解决平面几何的“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.课后作业1. 阅读教材P.109到P.111; 2. 习案作业二十五.4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案精品 教案 精品 新课 标高 学人 必修 四全册 2.5 平面几何 中的 向量 方法
限制150内