高三数学第二轮专题讲座复习对集合的理解及集合思想应用的问题.doc
《高三数学第二轮专题讲座复习对集合的理解及集合思想应用的问题.doc》由会员分享,可在线阅读,更多相关《高三数学第二轮专题讲座复习对集合的理解及集合思想应用的问题.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、综合复习材料高中资料高三数学第二轮专题讲座复习:对集合的理解及集合思想应用的问题高考要求集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用 本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用 重难点归纳 1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合x|xP,要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题 2 注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A
2、B,则有A=或A两种可能,此时应分类讨论 典型题例示范讲解 例1设A=(x,y)|y2x1=0,B=(x,y)|4x2+2x2y+5=0,C=(x,y)|y=kx+b,是否存在k、bN,使得(AB)C=,证明此结论 命题意图 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题 知识依托 解决此题的闪光点是将条件(AB)C=转化为AC=且BC=,这样难度就降低了 错解分析 此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手 技巧与方法 由集合A与集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b
3、、k的范围,又因b、kN,进而可得值 解 (AB)C=,AC=且BC= k2x2+(2bk1)x+b21=0AC= 1=(2bk1)24k2(b21)0 4k24bk+10, 即 b21 4x2+(22k)x+(5+2b)=0BC=,2=(1k)24(52b)0 k22k+8b190, 从而8b20,即 b2 5 由及bN,得b=2代入由10和20知,方程只有负根,不符合要求 当m1时,由x1+x2=(m1)0及x1x2=10知,方程只有正根,且必有一根在区间(0,1内,从而方程至少有一个根在区间0,2内 故所求m的取值范围是m1 学生巩固练习 1 集合M=x|x=,kZ,N=x|x=,kZ,
4、则( )A M=NB MNC MND MN=2 已知集合A=x|2x7,B=x|m+1x2m1且B,若AB=A,则( )A 3m4B 3m4C 2m4D 20,b0,当AB只有一个元素时,a,b的关系式是_ 5 集合A=x|x2ax+a219=0,B=x|log2(x25x+8)=1,C=x|x2+2x8=0,求当a取什么实数时,AB 和AC=同时成立 6 已知an是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A=(an,)|nN*,B=(x,y)| x2y2=1,x,yR 试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明 (1)若以集合A中的元
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二轮 专题讲座 复习 集合 理解 思想 应用 问题
限制150内