2022年全国新高中考试I卷数学试题(剖析版).docx
《2022年全国新高中考试I卷数学试题(剖析版).docx》由会员分享,可在线阅读,更多相关《2022年全国新高中考试I卷数学试题(剖析版).docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密启用前 试卷类型:A2022年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案
2、;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则( )A. B. C. D. 【答案】D【解析】【分析】求出集合后可求.详解】,故,故选:D2. 若,则( )A. B. C. 1D. 2【答案】D【解析】【分析】利用复数的除法可求,从而可求.【详解】由题设有,故,故,故选:D3. 在中,点D在边AB上,记,则( )A. B. C. D. 【答案】B【解析】【分析】根据几何条件以及平面向量的线性运算即可解出【详解】
3、因为点D在边AB上,所以,即,所以故选:B4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A. B. C. D. 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积棱台上底面积,下底面积,故选:C5. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A. B. C. D. 【答案】D【解析】
4、【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,若两数不互质,不同的取法有:,共7种,故所求概率.故选:D.6. 记函数的最小正周期为T若,且的图象关于点中心对称,则( )A. 1B. C. D. 3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足,得,解得,又因为函数图象关于点对称,所以,且,所以,所以,所以.故选:A7. 设,则( )A. B. C. D. 【答案】C【解析】【分析】构造函数, 导数判断其单调性,由此确定大小.【详解】设,因为,
5、当时,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,当时,函数单调递减,当时,函数单调递增,又,所以当时,所以当时,函数单调递增,所以,即,所以故选:C.8. 已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,当时,所以当时,正四
6、棱锥的体积取最大值,最大值为,又时,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分9. 已知正方体,则( )A. 直线与所成的角为B. 直线与所成的角为C. 直线与平面所成的角为D. 直线与平面ABCD所成的角为【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平面,平面,则,因为,所
7、以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD10. 已知函数,则( )A. 有两个极值点B. 有三个零点C. 点是曲线的对称中心D. 直线是曲线的切线【答案】AC【解析】【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,令得或,令得,所以在上单调递减,在,上单调递增,所以是极值点,故A正确;因,所以,函数在上有一个零点,当时,即函数在上无零
8、点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:AC11. 已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )A. C的准线为B. 直线AB与C相切C. D. 【答案】BCD【解析】【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解
9、得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,联立,得,所以,所以或,又,所以,故C正确;因为,所以,而,故D正确.故选:BCD12. 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )A. B. C. D. 【答案】BC【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为,均为偶函数,所以即,所以,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无
10、法确定的函数值,故A错误.故选:BC.【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.三、填空题:本题共4小题,每小题5分,共20分13. 的展开式中的系数为_(用数字作答)【答案】-28【解析】【分析】可化为,结合二项式展开式的通项公式求解.【详解】因为,所以的展开式中含的项为,的展开式中的系数为-28故答案为:-2814. 写出与圆和都相切的一条直线的方程_【答案】或或【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 全国 新高 考试 数学试题 剖析
限制150内