基于Matlab的钢材表面图像分割和分类获奖科研报告.docx
《基于Matlab的钢材表面图像分割和分类获奖科研报告.docx》由会员分享,可在线阅读,更多相关《基于Matlab的钢材表面图像分割和分类获奖科研报告.docx(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、基于Matlab的钢材表面图像分割和分类获奖科研报告 摘 要:钢板表面的缺陷特征多种多样,严重影响钢板的质量,虽然可以通过改进加工工艺减少钢板表面的缺陷,但是在复杂的环境下,避免不了缺陷的出现,在此时及时发现钢板表面的缺陷是很重要的一项工作。通过人眼直接辨别钢板表面的缺陷效率低下劳动力耗费过多,但是把钢板的表面特征制作成图像,通过机器视觉对图像进行分割,提取钢板缺陷,是一种简单方便的方法。 关键词:钢板表面缺陷,图像,机器视觉 引言 钢材在我国工业发展中有很高的地位,它是很多机器器材不可或缺的材料,大到航母,小到汽车都离不开钢铁的影响。钢材表面的质量影响着钢材的使用情况。在生产钢材的过程中,有
2、很多因素影响到钢材表面的质量,使钢材表面出现各种缺陷。比如:划痕、孔洞、鳞片、裂纹和异物等等。这些缺陷不仅影响了钢材的外观,同样使钢材的使用变得麻烦,如果不能将钢材缺陷及时发现,有缺陷的钢材被使用,可能引发不必要的经济损失。如何对钢材表面进行快速准确的检查成了重中之重。 钢板表面质量检测经历了人工目测、传统无损检测和基于机器视觉的检测3个发展阶段。人工目视检测表面缺陷的方法效率低、容易漏检、劳动强度大和实时性差。传统无损检测方法包括涡流检测、红 外检测、漏磁检测和激光检测等,这些方法检出 的缺陷种类少,检测实时性不强,检测的表面缺陷分 辨率也不高,无法有效评估产品的表面质量状况。目前,基于机器
3、视觉的表面质量检测方法是研究的热点,该方法采用摄像机采集钢板表面图像,然后通过图像处理和分析提取缺陷图像特征,进行缺陷的自动分类。 1.图像预处理和图像分割 在钢板表面缺陷检测与识别中,对图像信息的获取是前提与关键。在图像获取的过程中,由于存在许多外在因素的影响,比如光照、灰尘和摄像器材自身等,会对获取的图像产生不同程度的干扰。图像在传送和转换过程中,对图像引入一些噪声。噪声的出现会对后期特征提取与图像分割造成不必要的困难,甚至导致图像分割的结果很不理想。引入噪声的原因可能是多种多样的,比如环境因素、摄像仪器本身和相对运动等都可能使图像降质1。为了获得理想的图像处理效果步骤为:1、将图像进行归
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 Matlab 钢材 表面 图像 分割 分类 获奖 科研 报告
限制150内