《一元一次方程的应用题归纳.docx》由会员分享,可在线阅读,更多相关《一元一次方程的应用题归纳.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元一次方程的应用题归纳方程的有关概念1. 方程:含有未知数的等式就叫做方程。2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程。3方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。注: 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。等式的性质等式的性
2、质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么ac=bc等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么a/c=b/c移项法则把等式一边的某项变号后移到另一边,叫做移项。去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的
3、项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a0)形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).列一元一次方程解应用题的一般步骤1.列方程解应用题的基本步骤步骤名 称方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2去括号去括号法则(可先分配再去括号)乘法分配律注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一
4、边(右边)等式性质1移项一定要改变符号4合并 同类项分别将未知项的系数相加、常数项相加1、整式的加减;2、有理数的加法法则单独的一个未知数的系数为“1”5系数化为“1”在方程两边同时除以未知数的系数(或方程两边同时乘以未知数系数的倒数)等式性质2不要颠倒了被除数和除数(未知数的系数作除数分母)*6检根x=a方法:把x=a分别代入原方程的两边,分别计算出结果. 若 左边右边,则x=a是方程的解;若 左边右边,则x=a不是方程的解.注:当题目要求时,此步骤必须表达出来.注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的
5、步骤,把难度转移到解方程的步骤上。(2)解方程的步骤不用写出,直接写结果即可。(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题。2.设未知数的方法设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况。(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用。(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本
6、身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去。(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题。题型一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a、b,(其中a、b均为整数, 1a9,0b9)则这个两位数可以表示为10a+b一个三位数的百位数字为a,十位数字为b,个位数字为c,(其中均为整数,且1a9,0b9,0c9)则这个三位数表示为:100a+b+c(2)奇数与偶数的表示方法:偶数可表示为2k,奇数可表示为2k+1(其中k表示整数)(3)三个相邻的整数的表示
7、方法:可设中间一个整数为a,则这三个相邻的整数可表示为a-1,a,a+1例1 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍正确答案是多少?例2 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份。题型二:日历问题(1)在日历问题中,横行相邻两数相差1,竖列相邻两数相差7(2)日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数(3)一年中,每月的天数是
8、有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的题型三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几(1)当较大量是较小量的几倍多几时,;(2)当较大量是较小量的几倍少几时,例5 一部拖拉机耕一片地,第一天耕了这片地的;第二天耕了剩下部分的,还剩下42公顷没耕完,则这片地共有多少公顷?例6 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的
9、一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只”问牧羊人的这群羊共有多少只?题型四:行程问题1.行程问题路程=速度时间相遇路程=速度和相遇时间追及路程=速度差追及时间2.流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度水流速度水流速度=(顺流速度逆流速度)3.火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速过桥时间=车长+桥长例7 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行甲每分钟走40米,乙每分钟走38米,丙每分钟走
10、36米出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长例8 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?例9 一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时,一天,小船从早晨6点由A港出发顺流行至B港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈问:(1)若小船按水流速度由A港漂流到B港需多少小时?(2)救生圈是何时掉入水中的?题型五:工程问题工作总量=工作时间工作效率各部分工作量之和=1例10 有甲
11、、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满问三管齐开了多少小时?例11 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?题型六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:利润=售价进价利润=进价利润率 实际售价=标价打折率例1
12、2 某商场经销一种商品,由于进货时价格比原进价降低了,使得利润增加了8个百分点,求经销这种商品原来的利润率。例13 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?题型七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案。例14 某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两
13、种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元问:甲、乙两人各投资了多少万元?例15 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过
14、,通过道口后,还需7分钟到达学校(1)若绕道而行,要15分钟到达学校。从节省时间考虑,王老师应选择绕道去学校还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后秩序恢复正常(每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?题型八:配套问题“配套”型应用题中有三组数据:(1)车间工人的人数;(2)每人每天平均能生产的不同的零件数;(3)不同零件的配套比(利用(1)(3)得到等量关系,构造方程)一般地说,(2)、(3)两个数据可以预先给定例如,在给出(2)、(3)两组数据的基础上,如何确定车间工人人数,使问题有整数解例16 某车间有2
15、8名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12个或螺母18个,一个螺栓要配两个螺母第一天安排14名工人生产螺栓,14名工人生产螺母,问第二天应分配多少人生产螺栓、多少人生产螺母,才能使两天总的生产效率最高?例17 某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型九:积分问题比赛场数=胜的场数+平的场数+负的场数,比赛分数=胜场得分+平场得分负场扣分。例18足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了一场,得17分(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期目标请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标第 15 页 共 15 页
限制150内