2022年浙江省宁波市中考数学试卷(含答案).docx
《2022年浙江省宁波市中考数学试卷(含答案).docx》由会员分享,可在线阅读,更多相关《2022年浙江省宁波市中考数学试卷(含答案).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年浙江省宁波市中考数学试卷一、选择题(每小题4分,共40分在每小题给出的四个选项中,只有一项符合题目要求)1(4分)(2022宁波)2022的相反数是()A2022BC2022D2(4分)(2022宁波)下列计算正确的是()Aa3+aa4Ba6a2a3C(a2)3a5Da3aa43(4分)(2022宁波)据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破数1360000000用科学记数法表示为()A1.36107B13.6108C1.36109D0.1361010
2、4(4分)(2022宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()ABCD5(4分)(2022宁波)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温()36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A36.5,36.4B36.5,36.5C36.8,36.4D36.8,36.56(4分)(2022宁波)已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A36cm2B24cm2C16cm2D12cm27(4分)(2022宁波)如图,在RtABC中,D为斜边AC的中点,E为B
3、D上一点,F为CE中点若AEAD,DF2,则BD的长为()A2B3C2D48(4分)(2022宁波)我国古代数学名著九章算术中记载:“粟米之法:粟率五十;粝米三十今有米在十斗桶中,不知其数满中添粟而春之,得米七斗问故米几何?”意思为:50斗谷子能出30斗米,即出米率为今有米在容量为10斗的桶中,但不知道数量是多少再向桶中加满谷子,再舂成米,共得米7斗问原来有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为()ABCD9(4分)(2022宁波)点A(m1,y1),B(m,y2)都在二次函数y(x1)2+n的图象上若y1y2,则m的取值范围为()Am2BmCm1Dm210(4分)(
4、2022宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等若知道图中阴影部分的面积,则一定能求出()A正方形纸片的面积B四边形EFGH的面积CBEF的面积DAEH的面积二、填空题(每小题5分,共30分)11(5分)(2022宁波)请写出一个大于2的无理数: 12(5分)(2022宁波)分解因式:x22x+1 13(5分)(2022宁波)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同从袋中任意摸出一个球是红球的概率为 14(5分)(2022宁波)定义一种新运算:对于任意的非零实数a,b,ab+若(x+1)
5、x,则x的值为 15(5分)(2022宁波)如图,在ABC中,AC2,BC4,点O在BC上,以OB为半径的圆与AC相切于点AD是BC边上的动点,当ACD为直角三角形时,AD的长为 16(5分)(2022宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y(x0)的图象上,BEx轴于点E若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为 ,点F的坐标为 三、解答题(本大题有8小题,共80分)17(8分)(2022宁波)(1)计算:(x+1)(x1)+x(2x)(2)解不等式组:18(8分)(2022宁波)图1,图2都是由边长为1的小等边三角
6、形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形(1)在图1中画出等腰三角形ABC,且点C在格点上(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上19(8分)(2022宁波)如图,正比例函数yx的图象与反比例函数y(k0)的图象都经过点A(a,2)(1)求点A的坐标和反比例函数表达式(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围20(10分)(2022宁波)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试根据他们集训时间、测试成绩绘制成如下两个统计图根据图中信
7、息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法21(10分)(2022宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m(1)若ABD53,求此时云梯AB的长(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在
8、该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由(参考数据:sin530.8,cos530.6,tan531.3)22(10分)(2022宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2x8,且x为整数)构成一种函数关系每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克(1)求y关于x的函数表达式(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?23(12分)(2022宁波)【基础巩固】(1)如图1,在ABC中,D,E,F分别为A
9、B,AC,BC上的点,DEBC,BFCF,AF交DE于点G,求证:DGEG【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG若CGDE,CD6,AE3,求的值【拓展提高】(3)如图3,在ABCD中,ADC45,AC与BD交于点O,E为AO上一点,EGBD交AD于点G,EFEG交BC于点F若EGF40,FG平分EFC,FG10,求BF的长24(14分)(2022宁波)如图1,O为锐角三角形ABC的外接圆,点D在上,AD交BC于点E,点F在AE上,满足AFBBFDACB,FGAC交BC于点G,BEFG,连结BD,DG设ACB(1)用含的代数式表示BFD(2)求证:BDEFDG(3)如图2,
10、AD为O的直径当的长为2时,求的长当OF:OE4:11时,求cos的值2022年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分在每小题给出的四个选项中,只有一项符合题目要求)1(4分)(2022宁波)2022的相反数是()A2022BC2022D【分析】相反数的概念:只有符号不同的两个数叫做互为相反数,据此判断即可【解答】解:2022的相反数是2022故选:A【点评】本题考查了相反数,熟记相反数的定义是解答本题的关键2(4分)(2022宁波)下列计算正确的是()Aa3+aa4Ba6a2a3C(a2)3a5Da3aa4【分析】根据合并同类项判断A选项;根据同底数幂的除
11、法判断B选项;根据幂的乘方判断C选项;根据同底数幂的乘法判断D选项【解答】解:A选项,a3与a不是同类项,不能合并,故该选项不符合题意;B选项,原式a4,故该选项不符合题意;C选项,原式a6,故该选项不符合题意;D选项,原式a4,故该选项符合题意;故选:D【点评】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握amanam+n是解题的关键3(4分)(2022宁波)据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新疆生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破数1360000000用科学记数法表示为()
12、A1.36107B13.6108C1.36109D0.1361010【分析】将较大的数写成a10n,其中1a10,n为正整数即可【解答】解:13600000001.36109,故选:C【点评】本题考查了科学记数法表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键4(4分)(2022宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()ABCD【分析】根据俯视图的定义进行判定即可得出答案【解答】解:根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,故C选项符合题意故选:C【点评】本题主要考查了简单几何体的三视图,熟练掌握简单
13、几何体的三视图的判定方法进行求解是解决本题的关键5(4分)(2022宁波)开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温()36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为()A36.5,36.4B36.5,36.5C36.8,36.4D36.8,36.5【分析】应用众数和中位数的定义进行就算即可得出答案【解答】解:由统计表可知,众数为36.5,中位数为36.5故选:B【点评】本题主要考查了众数和中位数,熟练掌握众数和中位数的计算方法进行求解是解决本题的关键6(4分)(2022宁波)已知圆锥的底面半径为4cm
14、,母线长为6cm,则圆锥的侧面积为()A36cm2B24cm2C16cm2D12cm2【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解【解答】解:圆锥的侧面积24624(cm2)故选:B【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长7(4分)(2022宁波)如图,在RtABC中,D为斜边AC的中点,E为BD上一点,F为CE中点若AEAD,DF2,则BD的长为()A2B3C2D4【分析】根据三角形中位线可以求得AE的长,再根据AEAD,可以得到AD的长,然后
15、根据直角三角形斜边上的中线和斜边的关系,可以求得BD的长【解答】解:D为斜边AC的中点,F为CE中点,DF2,AE2DF4,AEAD,AD4,在RtABC中,D为斜边AC的中点,BDACAD4,故选:D【点评】本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线,解答本题的关键是求出AD的长8(4分)(2022宁波)我国古代数学名著九章算术中记载:“粟米之法:粟率五十;粝米三十今有米在十斗桶中,不知其数满中添粟而春之,得米七斗问故米几何?”意思为:50斗谷子能出30斗米,即出米率为今有米在容量为10斗的桶中,但不知道数量是多少再向桶中加满谷子,再舂成米,共得米7斗问原来有米多少斗?如果设
16、原来有米x斗,向桶中加谷子y斗,那么可列方程组为()ABCD【分析】根据原来的米+向桶中加的谷子10,原来的米+桶中的谷子舂成米7即可得出答案【解答】解:根据题意得:,故选:A【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子10,原来的米+桶中的谷子舂成米7是解题的关键9(4分)(2022宁波)点A(m1,y1),B(m,y2)都在二次函数y(x1)2+n的图象上若y1y2,则m的取值范围为()Am2BmCm1Dm2【分析】根据y1y2列出关于m的不等式即可解得答案【解答】解:点A(m1,y1),B(m,y2)都在二次函数y(x1)2+n的图象上,y1(
17、m11)2+n(m2)2+n,y2(m1)2+n,y1y2,(m2)2+n(m1)2+n,(m2)2(m1)20,即2m+30,m,故选:B【点评】本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式本题属于基础题,难度不大10(4分)(2022宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等若知道图中阴影部分的面积,则一定能求出()A正方形纸片的面积B四边形EFGH的面积CBEF的面积DAEH的面积【分析】根据题意设设PDx,GHy,则PHxy,根据矩形纸片和正方形纸片的周长相等,可得APx+
18、y,先用面积差表示图中阴影部分的面积,并化简,再用字母分别表示出图形四个选项的面积,可得出正确的选项【解答】解:设PDx,GHy,则PHxy,矩形纸片和正方形纸片的周长相等,2AP+2(xy)4x,APx+y,图中阴影部分的面积S矩形ABCD2ADH2SAEB(2x+y)(2xy)2(xy)(2x+y)2(2xy)x4x2y2(2x2+xy2xyy2)(2x2xy)4x2y22x2+xy+y22x2+xy2xy,A、正方形纸片的面积x2,故A不符合题意;B、四边形EFGH的面积y2,故B不符合题意;C、BEF的面积EFBQxy,故C符合题意;D、AEH的面积EHAMy(xy)xyy2,故D不符
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 浙江省 宁波市 中考 数学试卷 答案
限制150内