2024版高考数学一轮总复习第八章立体几何与空间向量课时规范练34基本立体图形及空间几何体的表面积和体积北师大版.docx
《2024版高考数学一轮总复习第八章立体几何与空间向量课时规范练34基本立体图形及空间几何体的表面积和体积北师大版.docx》由会员分享,可在线阅读,更多相关《2024版高考数学一轮总复习第八章立体几何与空间向量课时规范练34基本立体图形及空间几何体的表面积和体积北师大版.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时规范练34基础巩固组1.能旋转形成如图所示的几何体的平面图形是()答案:A解析:此几何体自上向下是由一个圆锥、两个圆台和一个圆柱构成,是由A中的平面图形旋转形成的.故选A.2.(2022广东潮州二模)已知一个圆柱的轴截面为正方形,且它的侧面积为36,则该圆柱的体积为()A.16B.27C.36D.54答案:D解析:设圆柱底面半径为R,高为h,则=2R,2R=36,解得R=3,=6,圆柱的体积V=R2h=54.3.(2022广东深圳二模)已知一个球的表面积在数值上是它的体积的3倍,则这个球的半径是()A.2B.2C.3D.3答案:D解析:设球的半径为R,则根据球的表面积公式和体积公式,可得4
2、R2=43R33,化简得R=3.4.(2023福建福州格致中学模拟)已知一个直三棱柱的高为2,其底面ABC水平放置的直观图为ABC,如图所示,其中OA=OB=OC=1,则此三棱柱的表面积为()A.4+42B.8+42C.8+45D.8+85答案:C解析:由斜二测画法可得底面的平面图如图所示,其中OA=2OB=2OC=2,所以AB=AC=5,所以此三棱柱的表面积S=21222+(2+25)2=8+45.5.(2022山东菏泽一模)如图1,在高为h的直三棱柱容器ABC-A1B1C1中,AB=AC=2,ABAC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾
3、斜到某一位置时,水面恰好为A1B1C(如图2),则容器的高h为()图1图2A.3B.4C.42D.6答案:A解析:在图1中V水=12222=4,在图2中,V水=VABC-A1B1C1VC-A1B1C1=1222h-131222h=43h,43h=4,h=3.6. (2022广东佛山二模)如图,某几何体由共底面的圆锥和圆柱组合而成,且圆柱的两个底面圆周和圆锥的顶点均在体积为36的球的球面上,若圆柱的高为2,则圆锥的侧面积为()A.26B.46C.16D.163答案:B解析:依题意,作球的剖面图,其中,O是球心,E是圆锥的顶点,EC是圆锥的母线.设球的半径为R,则43R3=36,R=3.圆柱的高为
4、2,OD=1,DE=3-1=2,DC=32-12=22,母线EC=22+8=23.圆锥的侧面积S=12EC2DC=1223222=46.故选B.7.(2022全国甲,理9)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若S甲S乙=2,则V甲V乙=()A.5B.22C.10D.5104答案:C解析:如图,甲、乙两个圆锥的侧面展开图刚好拼成一个圆,设圆的半径(即圆锥的母线长)为3,则圆的周长为6,甲、乙两个圆锥的底面半径分别为r1,r2,高分别为h1,h2,则2r1=4,2r2=2,则r1=2,r2=1,由勾股定理得,h1=5,h2=22,所
5、以V甲V乙=13r12113r222=2251222=10.故选C.8.(多选)(2023广东广州高三检测)某班级到一工厂参加社会实践劳动,加工出如图所示的圆台O1O2,在轴截面ABCD中,AB=AD=BC=2 cm,且CD=2AB,则()A.该圆台的高为1 cmB.该圆台轴截面面积为33 cm2C.该圆台的体积为733 cm3D.一只小虫从点C沿着该圆台的侧面爬行到AD的中点,所经过的最短路程为5 cm答案:BCD解析:如图,作BECD交CD于点E,易得CE=CD-AB2=1,则BE=22-12=3,则圆台的高为3cm,故A错误;圆台的轴截面面积为12(2+4)3=33(cm2),故B正确;
6、圆台的体积为133(+4+4)=733(cm3),故C正确;由圆台补成圆锥,可得大圆锥的母线长为4cm,底面半径为2cm,侧面展开图的圆心角=224=,设P为AD的中点,连接CP,可得COD=2,OC=4,OP=3,则CP=42+32=5,从点C沿着该圆台的侧面爬行到AD的中点,所经过的最短路程为5cm,故D正确.故选BCD.9. (2023湖南长沙一中高三检测)在棱长为2的正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱AB,BC,CD,DA的中点,将该正方体挖去两个四分之一圆锥,得到如图所示的几何体,则该几何体的体积为.答案:8-3解析:该几何体为正方体挖去两个四分之一圆锥,圆锥
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 高考 数学 一轮 复习 第八 立体几何 空间 向量 课时 规范 34 基本 立体 图形 几何体 表面积 体积 北师大
链接地址:https://www.taowenge.com/p-96408917.html
限制150内