2024版高考数学一轮总复习第10章计数原理概率随机变量及其分布第3节随机事件与概率.docx
《2024版高考数学一轮总复习第10章计数原理概率随机变量及其分布第3节随机事件与概率.docx》由会员分享,可在线阅读,更多相关《2024版高考数学一轮总复习第10章计数原理概率随机变量及其分布第3节随机事件与概率.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三节随机事件与概率考试要求:1了解随机事件发生的不确定性和频率的稳定性2了解概率的意义及频率与概率的区别3了解两个互斥事件的概率加法公式一、教材概念结论性质重现1确定试验的样本空间(1)样本点和样本空间我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间一般地,我们用表示样本空间,用表示样本点(2)有限样本空间如果一个随机试验有n个可能结果1,2,n,则称样本空间1,2,n为有限样本空间2事件类型的判断(1)随机事件我们将样本空间的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件随机事件一般用大写字母A,B,C,表示在每次试验中,当且仅当A中
2、某个样本点出现时,称为事件A发生(2)必然事件作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以总会发生,我们称为必然事件(3)不可能事件空集不包含任何样本点,在每次试验中都不会发生,我们称为不可能事件3事件的关系(1)互斥(互不相容)定义一般地,如果事件A与事件B不能同时发生,也就是说AB是一个不可能事件,即AB,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示AB图形表示(2)互为对立定义一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即AB,且AB,那么称事件A与事件B互为对立事件A的对立事件记为A含义A与B有且仅有一个发生符号表示AB
3、,AB图形表示4事件的运算(1)包含关系定义一般地,若事件A发生,则事件B一定发生,我们就称事件B包含事件A(或事件A包含于事件B)含义A发生导致B发生符号表示BA(或AB)图形表示特殊情形如果事件B包含事件A,事件A也包含事件B,即BA且AB,则称事件A与事件B相等,记作AB(2)并事件(和事件)定义一般地,事件A与事件B至少有一个发生,这样的一个事件中的样本点或者在事件A中,或者在事件B中,我们称这个事件为事件A与事件B的并事件(或和事件)含义A与B至少一个发生符号表示AB(或AB)图形表示(3)交事件(积事件)定义一般地,事件A与事件B同时发生,这样的一个事件中的样本点既在事件A中,也在
4、事件B中,我们称这样的一个事件为事件A与事件B的交事件(或积事件)含义A与B同时发生符号表示AB(或AB)图形表示互斥事件与对立事件都是指两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求必须有一个发生5概率的基本性质性质1:对任意的事件A,都有P(A)0性质2:必然事件的概率为1,不可能事件的概率为0,即P()1,P()0性质3:如果事件A与事件B互斥,那么P(AB)P(A)P(B)性质4:如果事件A与事件B互为对立事件,那么P(B)1P(A),P(A)1P(B)性质5:如果AB,那么P(A)P(B)性质6:设A,B是一个随机试验中的两个事件,
5、我们有P(AB) P(A)P(B)P(AB)1随机事件A,B互斥与对立的区别与联系当随机事件A,B互斥时,不一定对立;当随机事件A,B对立时,一定互斥2从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集(2)事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集二、基本技能思想活动经验1判断下列说法的正误,对的画“”,错的画“”(1)事件发生的频率与概率是相同的()(2)随机事件和随机试验是一回事()(3)在大量重复试验中,概率是频率的稳定值()(4)两个事件的和事件发生是指这两个事件至少有一个发生()(5)若A
6、,B为互斥事件,则P(A)P(B)1()(6)对立事件一定是互斥事件,互斥事件不一定是对立事件()2一个不透明的袋子中装有8个红球,2个白球,除颜色外,球的大小、质地完全相同,采用不放回的方式从中摸出3个球下列事件为不可能事件的是()A3个都是白球B3个都是红球C至少1个红球D至多2个白球A解析:由于袋子中白球的个数为2个,摸出的3个球都是白球是不可能事情,故A选项正确摸出的3个球都是红球是随机事件,故B选项错误摸出的球至少一个红球是必然事件,故C选项错误摸出的球至多2个白球是必然事件,故D选项错误故选A3(2022烟台期末)抛掷一枚质地均匀的正六面体骰子,其六个面分别标有数字1,2,3,4,
7、5,6,观察朝上一面的点数,设事件A“点数为奇数”,B“点数为4”,则A与B的关系为()A互斥B相等C互为对立D相互独立A解析:事件A与B不可能同时发生,但能同时不发生,故A与B是互斥事件4(多选题)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件M“取出的两球同色”,N“取出的两球中至少有一个黄球”,S“取出的两球至少有一个白球”,T“取出的两球不同色”,H“取出的两球中至多有一个白球”则()AM与T互为对立BN与S互斥CS与H互斥DN与H不互斥AD解析:对于选项A,事件M“取出的两球同色”,T“取出的两球不同色”,显然不可能同时发生,且也不可能都不发生,所以M和T是对立事
8、件故选项A正确对于选项B,如果“取出的两个球为一个白球和一个黄球”,则N和S同时发生,所以N和S不是互斥事件,故B选项错误对于选项C,如果“取出的两个球为一个白球和一个黄球”,则S和H同时发生,所以S和H不是互斥事件,故C选项错误对于选项D,如果“取出的两个球为一个白球和一个黄球”,则N和H同时发生,所以N和H不是互斥事件,故D选项正确5容量为20的样本数据,分组后的频数如下表:分组10,20)20,30)30,40)40,50)50,60)60,70)频数234542则样本数据落在区间10,40)的频率为_0.45解析:落在10,40)的频率为2+3+4200.456一个口袋内装有2个白球和
9、3个黑球,则在先摸出1个白球后放回的条件下,再摸出1个白球的概率是_25解析:先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率因为袋内装有2个白球和3个黑球,因此所求概率为25考点1随机事件的关系基础性(1)(多选题)一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球,每次摸出一个球设事件R1“第一次摸到红球”,R“两次都摸到红球”,G“两次都摸到绿球”,M“两球颜色相同”,N“两球颜色不同”,则()AR1RBRGCRGMDMNBCD解析:由题意知,R“两次都摸到红球”,R1“第一次摸到红
10、球”,所以RR1,故选项A错误因为R“两次都摸到红球”,G“两次都摸到绿球”,两个事件没有公共的基本事件,所以RG,故选项B正确因为R“两次都摸到红球”,G“两次都摸到绿球”,M“两球颜色相同”,故R或G表示摸的两个球的颜色相同,所以RGM,故选项C正确因为M“两球颜色相同”,N“两球颜色不同”,由对立事件的定义可知,MN,故选项D正确(2)把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”的关系是()A既不互斥也不对立B既互斥又对立C互斥但不对立D对立C解析:把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“
11、甲分得红牌”与事件“乙分得红牌”不能同时发生,但能同时不发生,所以事件“甲分得红牌”与事件“乙分得红牌”的关系是互斥但不对立故选C判断互斥事件、对立事件的两种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件(2)集合法:由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集1同时投掷两枚硬币一次,互斥而不对立的两个事件是()A“至少有1枚正面朝上”与“2枚都是反面朝上”B“至少有1枚正面朝上”
12、与“至少有1枚反面朝上”C“恰有1枚正面朝上”与“2枚都是正面朝上”D“至少有1枚反面朝上”与“2枚都是反面朝上”C解析:在A中,“至少有1枚正面朝上”与“2枚都是反面朝上”不能同时发生,且“至少有1枚正面朝上”不发生时,“2枚都是反面朝上”一定发生,故A中的两个事件是对立事件在B中,当2枚硬币恰好1枚正面朝上,1枚反面朝上时,“至少有1枚正面朝上”与“至少有1枚反面朝上”能同时发生,故B中的两个事件不是互斥事件在C中,“恰有1枚正面朝上”与“2枚都是正面朝上”不能同时发生,且其中一个不发生时,另一个有可能发生也有可能不发生,故C中的两个事件是互斥而不对立事件在D中,当2枚硬币同时反面朝上时,
13、“至少有1枚反面朝上”与“2枚都是反面朝上”能同时发生,故D中的两个事件不是互斥事件故选C2口袋里装有6个形状相同的小球,其中红球1个,白球2个,黄球3个从中取出两个球,事件A“取出的两个球同色”,B“取出的两个球中至少有一个黄球”,C“取出的两个球中至少有一个白球”,D“取出的两个球不同色”,E“取出的两个球中至多有一个白球”下列判断中正确的序号为_A与D为对立事件;B与C是互斥事件;C与E是对立事件;P(CE)1;P(B)P(C)解析:显然A与D是对立事件,正确;当取出的两个球为一黄一白时,B与C都发生,不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,不正确;CE为必然事件,P(
14、CE)1,正确;P(B)45,P(C)35,不正确考点2随机事件的频率与概率基础性如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间/分10202030304040505060选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径解:(1)由已知共调查了100人,其中40分钟内不
15、能赶到火车站的有121216444(人),所以用频率估计相应的概率p441000.44(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为所用时间/分10202030304040505060选择L1的频率0.10.20.30.20.2选择L2的频率00.10.40.40.1(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站由(2)知P(A1)0.10.20.30.6,P(A2)0.10.40.5因为P(A1)P(A2),所以甲应选择L1同理,P(B1)0.10.20.30.20.8,P(B2)0.10
16、.40.40.9因为P(B1)P(B2),所以乙应选择L21概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值频率是概率的近似值,概率是频率的稳定值2随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率提醒:概率的定义是求一个事件概率的基本方法1在投掷一枚硬币的试验中,共投掷了100次,正面朝上的频数为51次,则正面朝上的频率为()A49B0.5C0.51D0.49C解析:由题意,根据事件发生的频率的
17、定义可知,“正面朝上”的频率为511000.512某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:本科研究生合计35岁以下4030703550岁27134050岁以上8210现从该校教职工中任取1人,则下列结论正确的是()A该校教职工具有本科学历的概率低于60%B该校教职工具有研究生学历的概率超过50%C该校教职工的年龄在50岁以上的概率超过10%D该校教职工的年龄在35岁及以上且具有研究生学历的概率超过10%D解析:对于选项A,该校教职工具有本科学历的概率p751205862.5%60%,故A错误对于选项B,该校教职工具有研究生学历的概率p451203837.5
18、%50%,故B错误对于选项C,该校教职工的年龄在50岁以上的概率p101201128.3%10%,故D正确故选D考点3互斥事件与对立事件的概率综合性考向1互斥事件的和事件某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100名顾客的相关数据,如表所示一次购物量(件)1458912131617及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%(1)求x,y的值(2)求顾客一次购物的结算时间超过2分钟的概率解:(1)由已知得25y1055,x3045,所以x15,y20(2)记A:一位顾客一次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 高考 数学 一轮 复习 10 计数 原理 概率 随机变量 及其 分布 随机 事件
限制150内