2024届高考数学(北师大版)一轮复习试题-第八章立体几何与空间向量课时规范练34 空间点、直线、平面之间的位置关系.docx
《2024届高考数学(北师大版)一轮复习试题-第八章立体几何与空间向量课时规范练34 空间点、直线、平面之间的位置关系.docx》由会员分享,可在线阅读,更多相关《2024届高考数学(北师大版)一轮复习试题-第八章立体几何与空间向量课时规范练34 空间点、直线、平面之间的位置关系.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时规范练34空间点、直线、平面之间的位置关系基础巩固组1.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线2.如图,E,F分别是正方体ABCD-A1B1C1D1的棱A1D1与AA1的中点,则下列判断正确的是()A.直线AC与BF是相交直线B.直线C1E与AC互相平行C.直线C1E与BF是异面直线D.直线DB与AC互相垂直3.已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.l1,l2,l3是
2、空间三条不同的直线,则下列命题正确的是()A.l1l2,l2l3l1l3B.l1l2,l2l3l1l3C.l1l2l3l1,l2,l3共面D.l1,l2,l3共点l1,l2,l3共面5.正方体ABCD-A1B1C1D1的棱长为2,E是棱B1C1的中点,则平面AD1E截该正方体所得的截面面积为()A.42B.22C.4D.926.如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS不是共面直线的是()7.已知,在梯形ABCD中,ABCD,AB平面,CD平面,则直线CD与平面内的任意一条直线m的位置关系是.8.如图,平面平面=l,A,B,ABl=D,C,Cl,则平面AB
3、C与平面的交线是.9.如图,点A在平面外,BCD在平面内,E,F,G,H分别是线段BC,AB,AD,DC的中点.(1)求证:E,F,G,H四点在同一平面上;(2)若AC=6,BD=8,异面直线AC与BD所成角为60,求EG的长.综合提升组10.如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论不正确的是()A.A,M,O三点共线B.A,M,O,A1四点共面C.C1,O,C,M四点共面D.D,B1,O,M四点共面11.在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点
4、,则下列说法中不正确的是()A.CM与PN是异面直线B.CMPNC.平面PAN平面BB1D1DD.过P,A,C三点的正方体的截面一定是等腰梯形12.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.13.在长方体ABCD-A1B1C1D1中,E为棱CC1上一点,F为棱AA1的中点,且CE=2C1E,AB=2,AA1=3,BC=4,则平面BEF截该长方体所得截面为边形,截面与侧面ADD1A1,侧面CDD1C1的交线长度之和为.14.如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BAD=FAB
5、=90,BCAD,且BC=12AD,BEAF且BE=12AF,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平行四边形.(2)C,D,E,F四点是否共面?为什么?(3)证明:直线FE,AB,DC相交于一点.创新应用组15.正方体ABCD-A1B1C1D1的棱长为1,点K在棱A1B1上运动,过A,C,K三点作正方体的截面,若K为棱A1B1的中点,则截面面积为,若截面把正方体分成体积之比为21的两部分,则A1KKB1=.课时规范练34空间点、直线、平面之间的位置关系1.C解析:由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线.若bc,则ab,与已知a,b为异面直线相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 高考 数学 北师大 一轮 复习 试题 第八 立体几何 空间 向量 课时 规范 34 直线 平面 之间 位置 关系
链接地址:https://www.taowenge.com/p-96409006.html
限制150内