2024届高考数学(北师大版)一轮复习试题-第十一章 计数原理、概率、随机变量及其分布课时规范练53 离散型随机变量的分布列、均值与方差.docx
《2024届高考数学(北师大版)一轮复习试题-第十一章 计数原理、概率、随机变量及其分布课时规范练53 离散型随机变量的分布列、均值与方差.docx》由会员分享,可在线阅读,更多相关《2024届高考数学(北师大版)一轮复习试题-第十一章 计数原理、概率、随机变量及其分布课时规范练53 离散型随机变量的分布列、均值与方差.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时规范练53离散型随机变量的分布列、均值与方差基础巩固组1.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数的最大值为()A.5B.2C.3D.42.设随机变量X的分布列如下,则P(|X-2|=1)=()X1234P1614m13A.712B.12C.512D.163.设随机变量X的分布列如下:X0123P0.1a0.30.4则方差DX=()A.0B.1C.2D.34.设离散型随机变量X可能的取值为1,2,3,4,P(X=k)=ak+b,又X的数学期望为EX=3,则a+b=()A.110B.0C.-110D.155.已知随机变量的分布列如表:X0
2、12P0.2ab若EX=1,则DX=()A.0.1B.0.2C.0.4D.0.66.设随机变量的分布列为P=k5=ak(k=1,2,3,4,5),则下列结论错误的是()A.15a=1B.P(0.50.8)=0.2C.P(0.10.5)=0.2D.P(=1)=0.37.已知随机变量的分布列如表,则x=.012Px2x148.已知X的分布列如表,设Y=2X+1,则Y的数学期望EY的值是.X-101P1216a综合提升组9.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为p(0p1.75,则p的取值范围为()A.0,12B.0
3、,712C.12,1D.712,110.袋内有形状、大小完全相同的2个黑球和3个白球,从中不放回地每次任取1个小球,直至取到白球后停止取球,则下列说法正确的是()A.抽取2次后停止取球的概率为35B.停止取球时,取出的白球个数不少于黑球的概率为310C.取球次数的期望为2D.取球次数的方差为92011.已知随机变量的分布列是-101P121-p2p2随机变量的分布列是123P121-p2p2则当p在(0,1)内增大时,下列选项中正确的是()A.E=EB.D=DC.E减小D.D先增大后减小12.已知随机变量X的分布列为X012Pa2ab已知a0,b0,当DX最大时,EX=.13.对某种型号的仪器
4、进行质量检测,每台仪器最多可检测3次,一旦发现问题,则停止检测,否则一直检测到3次为止,设该仪器一次检测出现问题的概率为0.2,则检测2次停止的概率为;设检测次数为X,则X的数学期望为.14.已知某盒子中共有6个小球,编号为1号至6号,其中有3个红球、2个黄球和1个绿球,这些球除颜色和编号外完全相同.(1)若从盒中一次随机取出3个球,求取出的3个球中恰有2个颜色相同的概率;(2)若从盒中逐一取球,每次取后立即放回,共取4次,求恰有3次取到黄球的概率;(3)若从盒中逐一取球,每次取后不放回,记取完黄球所需次数为X,求随机变量X的分布列及数学期望EX.创新应用组15.甲、乙两家外卖公司,其送餐员的
5、日工资方案如下:甲公司,底薪80元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表送餐单数3839404142天数101510105乙公司送餐员送餐单数频数表送餐单数3839404142天数51010205(1)现从记录甲公司送餐员的50天送餐单数中随机抽取3天的送餐单数,求这3天送餐单数都不小于40的概率.(2)若将频率视为概率,回答下列两个问题:记乙公司送餐员日工资为X(
6、单位:元),求X的分布列和数学期望EX;小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日平均工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.课时规范练53离散型随机变量的分布列、均值与方差1.D解析: 由于不能打开的钥匙会扔掉,故扔掉4把打不开的钥匙后,第5把钥匙就是能开锁的钥匙,的最大值为4,故选D.2.C解析: 由16+14+m+13=1,得m=14,所以P(|X-2|=1)=P(X=1)+P(X=3)=16+14=512.3.B解析: 由题得,a=1-0.1-0.3-0.4=0.2,则EX=10.2+20.3+30.4=2,E(X2)=10.2+40.3+90.4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 高考 数学 北师大 一轮 复习 试题 第十一 计数 原理 概率 随机变量 及其 分布 课时 规范 53 离散 均值 方差
链接地址:https://www.taowenge.com/p-96409579.html
限制150内