(2.2)--第2章 计算机信息表示大学计算机.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《(2.2)--第2章 计算机信息表示大学计算机.ppt》由会员分享,可在线阅读,更多相关《(2.2)--第2章 计算机信息表示大学计算机.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、0 AND 104lThe phenomenon is abstracted into symbols and combined with symbolsThe phenomenon is abstracted into symbols and combined with symbols1.2 0 1.2 0 and and 1 1lFurther more,the diversity of combination Further more,the diversity of combination is considered to adapt to more semanticsis consi
2、dered to adapt to more semantics1 0 21种11 01 10 00 22种111 110 101 100 011 010 001 000 23种 26种 0 and 1 thinking:Yi Jing-Semantic symbolic expression0 and 1 thinking:Yi Jing-Semantic symbolic expressionWhen there are different combinations,there are more than 64 combinations.Therefore,only Yin and Yan
3、g can express infinite semanticslFrom the perspective of computational science,From the perspective of computational science,Yi JingYi Jing is actually a kind of artificial is actually a kind of artificial coding system,which uses the combination of coding system,which uses the combination of yin an
4、d Yang symbols to express specific yin and Yang symbols to express specific information,which runs through the important information,which runs through the important ideas of binary and coding.ideas of binary and coding.lDiscussion:why do computers use binary?Why not use decimal?1.2 0 1.2 0 and and
5、1 1 0 and 1 thinking:Yi Jing-Semantic symbolic expression0 and 1 thinking:Yi Jing-Semantic symbolic expressionpEasy to implement in the circuitEasy to implement in the circuitpIt is convenient for addition,subtraction and It is convenient for addition,subtraction and counting codingcounting coding(o
6、nly has 4 formulas)(only has 4 formulas)pSuitable for logical operationSuitable for logical operationpPhysically the easiest to implement storagePhysically the easiest to implement storagepStrong anti-interference abilityStrong anti-interference abilitylDiscussion:why do computers use binary?number
7、system in number system in computercomputer052.1 number system in computer2.1 number system in computer1.The concept of number system1.The concept of number systemCarry counting system is a method named by the number of digit Carry counting system is a method named by the number of digit symbols use
8、d to represent numerical values and counting symbols used to represent numerical values and counting according to certain carry rulesaccording to certain carry rules.The number of the number symbols used in the number system is The number of the number symbols used in the number system is called cal
9、led the base of the number systemthe base of the number system,f for example,a decimal or example,a decimal number consists of ten numbers,that is,0,1,2,3,4,5,6,7,number consists of ten numbers,that is,0,1,2,3,4,5,6,7,8,9.The base number of the decimal system is 10,Count to ten 8,9.The base number o
10、f the decimal system is 10,Count to ten to one.to one.T The value of each he value of each bitbit in the number system is called in the number system is called the bitthe bits s valuevalue of the number system of the number system.Decimal representationDecimal representation:lThe use of footmark num
11、bers to represent various carry counting systemsThe use of footmark numbers to represent various carry counting systems (d(dn-1n-1d dn-2n-2dd2 2d d1 1d d0 0.d.d-1-1d d-2-2dd-m-m)r r for example for example:(365.2)(365.2)1010,(11011.01)11011.01)2 2,(3460.32)3460.32)八八,(596.12),(596.12)十六十六lUsing suff
12、ixes to represent various carry counting systemsUsing suffixes to represent various carry counting systems B(binary):B(binary):Binary numberBinary number;O(octal):O(octal):Octal numberOctal number;H(hex):H(hex):Hexadecimal numberHexadecimal number,D(decimal):D(decimal):Decimal numberDecimal number。f
13、or example for example:365.2 365.2 D D,11011.01,11011.01 B B,3460.32,3460.32 O O,596.12,596.12 H HBinary numberBinary numberDecimal numberDecimal numberO Octal number ctal number Hexadecimal numberHexadecimal number000011111022211333100444101555110666111777100081081001911910101012A10111113B11001214C
14、11011315D11101416E11111517F10000162010The relationship between the representations of various number systemsN=aN=an-1n-1r rn-1n-1a an-2n-2r rn-2n-2a a0 0r r0 0a a-1-1r r-1-1a a-m-mr r-m-mThe base number N of R can be expressed as:The R-base number uses R basic symbols(0,1,2,R-1)The R-base number use
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.2-第2章 计算机信息表示大学计算机 2.2 计算机信息 表示 大学计算机
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内