3-平面的投影(1)(天选打工人).ppt





《3-平面的投影(1)(天选打工人).ppt》由会员分享,可在线阅读,更多相关《3-平面的投影(1)(天选打工人).ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 3.3 3.3 平面的投影平面的投影 一、一、平面的表示法平面的表示法不在同一不在同一直直线上的上的三个点三个点 直直线及及线外一外一点点a c a c b b d d 两平行直两平行直线c c a b a b 两相交两相交直直线平面平面图形形c a b a b c c a a b b c c a b a b c 1、用几何元素表示平面、用几何元素表示平面2、平面的迹线表示法、平面的迹线表示法VHPPVPHPVPHVHQVQHQHQVQ迹线迹线平面与投影面的交线。平面与投影面的交线。用迹线表示的平面称为用迹线表示的平面称为迹线平面迹线平面PH 平面平面P的水平面迹线的水平面迹线PV 平面平面
2、P的正面迹线的正面迹线Q为侧垂面为侧垂面一般位置平面一般位置平面x xz zy yp px xp pz zp pY YH HV VW WP PV VP PH HP PW WP PP PV VP PH Hx xp px xP PY YH Hp pY Yw wz zP PW WO Op pz zY YH HY YW W平行平行垂直垂直倾斜倾斜投投 影影 特特 性性 平面平行投影面平面平行投影面-投影就把实形现投影就把实形现 平面垂直投影面平面垂直投影面-投影积聚成直投影积聚成直线线 平面倾斜投影面平面倾斜投影面-投影类似原平面投影类似原平面实形性实形性类似性类似性积聚性积聚性 平面对一个投影面的投
3、影特性平面对一个投影面的投影特性二、平面的投影特性二、平面的投影特性平面对于三投影面的位置可分为平面对于三投影面的位置可分为三类三类:投影面垂直面投影面垂直面 投影面平行面投影面平行面一般位置平面一般位置平面特殊特殊位置位置平面平面垂直于某一投影面,垂直于某一投影面,倾斜于另两个投影面倾斜于另两个投影面平行于某一投影面,平行于某一投影面,垂直于另两个投影面垂直于另两个投影面与三个投影面都倾斜与三个投影面都倾斜 正垂面正垂面 侧垂面侧垂面 铅垂面铅垂面 正平面正平面 侧平面侧平面 水平面水平面 平面在三投影面体系中的投影特性平面在三投影面体系中的投影特性 OXZYVWHPPH(1 1)铅垂面)铅
4、垂面投影特性:投影特性:1)1)abc积聚为一条线积聚为一条线 2)2)a b c、a b c 为为 ABC的类似形的类似形 3)3)abc与与OX、OY的夹角的夹角反映反映、角的角的 真实大小真实大小 ABCacbababbaccc3.投影面垂直面投影面垂直面OXZY铅垂面铅垂面的迹线表示法的迹线表示法P PP PH H 用迹线表示的投影面用迹线表示的投影面垂直面的投影垂直面的投影P PH HP PW WP PV VOZXYHYW P PH HOZXYHYWOXZYQQV(2 2)正垂面)正垂面 AcCabBbababaccc投影特性投影特性 :1)1)a a b b c c 积聚为一条线积
5、聚为一条线 2)2)abcabc、a a b b c c 为为 ABCABC的类似形的类似形 3)3)a a b b c c 与与OXOX、OZOZ的夹角的夹角反映反映、角的角的 真实大小真实大小 OXZY正垂面正垂面的迹线表示法的迹线表示法 Q QQ QV VQ QV VOZXYHYWP PV VP PW WP PH HOZXYHYWOXZYSWS(3 3)侧垂面)侧垂面CabABcbababaccc投影特性投影特性 1)1)a a b b c c 积聚为一条线积聚为一条线 2)2)abc abc、a a b b c c 为为 ABCABC的类似形的类似形 3)3)a a b b c c 与
6、与OZOZ、OY OY 的夹角的夹角反映反映、角角的的 真实大小真实大小OXZY侧垂面侧垂面的迹线表示法的迹线表示法V VW WS Sw wS SS Sw wOZXYHYWP PH HP PV VP PW WOZXYHYWabca c b c b a 投影面垂直面投影面垂直面总结总结类似形类似形类似形类似形积聚性积聚性铅垂面铅垂面投影特性:投影特性:1)在它垂直的投影面上的投影积聚成在它垂直的投影面上的投影积聚成直线。该直线与投影轴的夹角反映空间平面直线。该直线与投影轴的夹角反映空间平面与另外两投影面的真实倾角。与另外两投影面的真实倾角。2)另外两个投影面上的投影为类似形。另外两个投影面上的投
7、影为类似形。为什么?为什么?是什么位置是什么位置的平面?的平面?OXZY4.投影面平行面:(投影面平行面:(1)水平面)水平面CABabcbacabccabbbaacc投影特性:投影特性:1)1)a a b b c c、a a b b c c 积聚为一条线,具有积聚为一条线,具有积聚性积聚性 2)2)水平投影水平投影 abcabc反映反映 ABCABC实形实形 OXZY(2)正平面)正平面投影特性:投影特性:1)1)abcabc 、a a b b c c 积聚为一条线,具有积聚为一条线,具有积聚积聚性性 2)2)正面投影正面投影 a a b b c c 反映反映 ABCABC实形实形 cabb
8、acbcabacabcbcaCBAOXZY(3)侧平面)侧平面abbbaccca投影特性:投影特性:1)1)abcabc 、a a b b c c 积聚为一条线,具有积聚为一条线,具有积积聚性聚性 2)2)侧面投影侧面投影 a a b b c c 反映反映 ABCABC实形实形bbbacaccCABa用用迹线表示迹线表示的的 投影面平行面的投影投影面平行面的投影水平面水平面侧平面侧平面正平面正平面P PV VP PW WOZXYHYWP PH HP PV VOZXYHYWP PH HP PW WOZXYHYWa b c a b c abc积聚性积聚性积聚性积聚性实形性实形性水平面水平面投影特性
9、:投影特性:在它所平行的投影面上的投影反映实形。在它所平行的投影面上的投影反映实形。另两个投影面上的投影分别积聚成与相应另两个投影面上的投影分别积聚成与相应的投影轴平行的直线。的投影轴平行的直线。投影面平行面投影面平行面总结总结OXZY5.一般位置平面一般位置平面abccabbaaabbccbacABC投影特性:投影特性:(1)(1)abc abc、a a b b c c 、a a b b c c 均为均为 ABCABC 的类似形的类似形 (2)(2)不反映不反映、的真实角度的真实角度a b c a c b a b c 一般位置平面一般位置平面三个投影都三个投影都类似。似。投影特性:投影特性:
10、a c b c a a b c b 例例:正垂面:正垂面ABCABC与与H H面的面的夹角角为4545,已知其水平投影,已知其水平投影 及及顶点点B B的正面投影,求的正面投影,求ABCABC的正面投影及的正面投影及侧面面 投影。投影。思考:此思考:此题有几个解?有几个解?45OXZYPwPVPHVHWAB 在一般位置平在一般位置平面上,可以作出无面上,可以作出无数条与三个投影面数条与三个投影面互相平行的直互相平行的直线思考:思考:在空间在空间任意平任意平面上面上,是否可以作,是否可以作出无数条与三个投出无数条与三个投影面互相平行的直影面互相平行的直线线?讨论:讨论:过一般位置平面内的一点能否
11、一般位置平面内的一点能否 作投影面平行作投影面平行线?VHVHa ab bb b a a S Sb b a a a ab bA AB B结论结论:过一般位置直线总可作投影面的垂直面。:过一般位置直线总可作投影面的垂直面。过一般位置直线过一般位置直线ABAB作作铅垂面铅垂面P PH H过一般位置直线过一般位置直线ABAB作正作正垂面垂面S SV VP PP PH HS SV VA AB B讨论:讨论:过一般位置直线能否作投影面的垂直面?过一般位置直线能否作投影面的垂直面?作图:作图:过一般位置直线作投影面的垂直面。过一般位置直线作投影面的垂直面。(迹线表示法迹线表示法)b b a a S SV
12、VQ QW WP PH HOZXYHYWa ab ba ab b作图:过一般位置直线作投影面的垂直面。作图:过一般位置直线作投影面的垂直面。(几何元素表示法几何元素表示法)m m n n(n n)(m)(m)OXOX铅垂面铅垂面正垂面正垂面e ef ff fe ee ef ff fe e讨论并作图:讨论并作图:过正垂线可作哪些平面?过正垂线可作哪些平面?(迹线表示法迹线表示法)P PV VS SV VQ QV VR RV V(a a)给题)给题(c c)作侧平面)作侧平面(b b)作水平面)作水平面(d d)作正垂面)作正垂面 (有无穷多个)(有无穷多个)OXOXOXOXmnm(n)mnm(n
13、)mnm(n)mnm(n)P PH HS SH Hg g g g(a a)给题给题(c c)作正垂面作正垂面(b b)作正平面作正平面(d d)作一般位置平面作一般位置平面(有无穷多个)(有无穷多个)讨论并作图讨论并作图 过正平线可作哪些平面?过正平线可作哪些平面?(迹线表示法迹线表示法)OXOXOXOXfefefefefefefefe三、平面上的直线和点三、平面上的直线和点位于平面上的直位于平面上的直线应满足的条件:足的条件:平面上取任意直平面上取任意直线M M N N A A B B M M 若一直若一直线过平面上平面上的两点,的两点,则此直此直线必在必在该平面内。平面内。若一直若一直线过
14、平面上的平面上的一点且平行于一点且平行于该平面平面上的另一直上的另一直线,则此此直直线在在该平面内。平面内。abcc a abcb c a mnn m 例例1:已知平面由直线:已知平面由直线AB、AC所确定,试所确定,试 在平面内任作一条直线。在平面内任作一条直线。解法一解法一解法二解法二根据定理二根据定理二根据定理二根据定理二有无数解。有无数解。d d有多少解?有多少解?b 例例2:在平面:在平面ABC内作一条水平线,使其到内作一条水平线,使其到 H面的距离为面的距离为10mm。n m nm10c a b cab 唯一解!唯一解!有多少解?有多少解?平面上取点平面上取点 先找出过此点而又在平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 投影 天选打 工人

限制150内