33圆心角(1)课件.ppt
《33圆心角(1)课件.ppt》由会员分享,可在线阅读,更多相关《33圆心角(1)课件.ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 在白纸上任意作一个圆和这个圆的任意一条直径在白纸上任意作一个圆和这个圆的任意一条直径在白纸上任意作一个圆和这个圆的任意一条直径在白纸上任意作一个圆和这个圆的任意一条直径CD,CD,CD,CD,然后沿着直径所在的直线把纸折叠然后沿着直径所在的直线把纸折叠然后沿着直径所在的直线把纸折叠然后沿着直径所在的直线把纸折叠,你发现了什么你发现了什么你发现了什么你发现了什么?结论结论1:圆是轴对称图形,圆是轴对称图形,圆是轴对称图形,圆是轴对称图形,每一条直径所在的直线每一条直径所在的直线每一条直径所在的直线每一条直径所在的直线都是对称轴。都是对称轴。都是对称轴。都是对称轴。强调:强调:判断:任意一条直径
2、都是圆的对称轴(判断:任意一条直径都是圆的对称轴()X(1)圆的对称轴是直线,不能说每一条直径都是圆的对称轴)圆的对称轴是直线,不能说每一条直径都是圆的对称轴;(2)圆的对称轴有无数条)圆的对称轴有无数条O O O OC CD D在刚才操作的基础上在刚才操作的基础上,再作一条和直径再作一条和直径CDCD垂直的弦垂直的弦AB,ABAB,AB与与CDCD相交于点相交于点E,E,然后沿着直径然后沿着直径CDCD所在的直线把纸折叠所在的直线把纸折叠,你你发现哪些点发现哪些点、线段线段、圆弧、圆弧、圆弧、圆弧互相重合互相重合?请用命题的形式表述你的结论请用命题的形式表述你的结论.A AB BE E AC
3、=BC,AD=BDO O O OC CD D得出结论:得出结论:EA=EB;理由如下:理由如下:OEA=OEB=RtOEA=OEB=Rt,根据圆的轴轴对称性,可得射线根据圆的轴轴对称性,可得射线EAEA与与EBEB重合,重合,点点A A与点与点B B重合,弧重合,弧ACAC和弧和弧BCBC重合,弧重合,弧ADAD和弧和弧BDBD重合重合 EA=EBEA=EB,AC=BCAC=BC,AD=BDAD=BD 思考:思考:你能利用等腰三角形的性质,说明你能利用等腰三角形的性质,说明OCOC平分平分ABAB吗吗?证明证明 :连接连接OAOA、OB,OB,OABCDM则则OA=OB.在在RtOAM和和Rt
4、OBM中中,OA=OB,OM=OM,RtOAM RtOBM.AM=BM.点点A和点和点B关于关于CD对称对称.O关于直径关于直径CD对称对称,当圆沿着直径当圆沿着直径CD对折时对折时,点点A与点与点B重合重合,AC和和BC重合重合,AD和和BD重合重合.AC=BC,AD=BD.垂径定理:垂径定理:垂直于弦的直径平分这条弦,垂直于弦的直径平分这条弦,并且平分弦所对的弧并且平分弦所对的弧垂径定理的几何语言叙述垂径定理的几何语言叙述:CD为直径,为直径,CDAB(或(或OCAB)EA=EB,AC=BC,AD=BD A AB BO O O OC CD DE E条件条件CD为直径为直径CDABCD平分弧
5、平分弧ADBCD平分弦平分弦ABCD平分弧平分弧A B结论结论分一条弧成相等的两条弧的点分一条弧成相等的两条弧的点,叫做这条叫做这条弧的中点弧的中点.例例1 1:已知已知ABAB如图,用直尺和圆规求作这条弧如图,用直尺和圆规求作这条弧的中点。的中点。E1.1.连结连结AB;AB;2.2.作作ABAB的垂直平分线的垂直平分线CD,CD,交交ABAB与点与点E;E;作法作法:点点E E就是所求就是所求ABAB的中点的中点.分析分析:要平分要平分AB,AB,只要画垂直只要画垂直于弦于弦ABAB的直径的直径.而这条直径而这条直径应在弦应在弦ABAB的垂直平分线上的垂直平分线上.因此画因此画ABAB的垂
6、直平分线就能的垂直平分线就能把把ABAB平分平分.变式:变式:求弧求弧ABAB的四等分点的四等分点CDABEFGmn例例2 2:一条排水管的截面如图所示。已知排水管的半一条排水管的截面如图所示。已知排水管的半一条排水管的截面如图所示。已知排水管的半一条排水管的截面如图所示。已知排水管的半径径径径OB=10OB=10OB=10OB=10,水面宽,水面宽,水面宽,水面宽AB=16AB=16AB=16AB=16。求截面圆心。求截面圆心。求截面圆心。求截面圆心O O O O到水面的距离。到水面的距离。到水面的距离。到水面的距离。DC1088解解:作作OCABOCAB于于C,C,由垂径定理得由垂径定理得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 33 圆心角 课件
限制150内