(13.1)--Optimal State Estimation导航定位系统.pdf
《(13.1)--Optimal State Estimation导航定位系统.pdf》由会员分享,可在线阅读,更多相关《(13.1)--Optimal State Estimation导航定位系统.pdf(550页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Optimal State Estimation Optimal State Estimation Kalman,H,and Nonlinear Approaches Dan Simon Cleveland State University A JOHN WILEY&SONS,INC.,PUBLICATION Copyright 6 2006 by John Wiley&Sons,Inc.All rights reserved.Published by John Wiley&Sons,Inc.,Hoboken,New Jersey.Published simultaneously in Can
2、ada.No part of this publication may be reproduced,stored in a retrieval system or transmitted in any form or by any means,electronic,mechanical,photocopying,recording,scanning,or otherwise,except as permitted under Section 107 or 108 of the 1976 United States Copyright Act,without either the prior w
3、ritten permission of the Publisher,or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,Inc.,222 Rosewood Drive,Danvers,MA 01923,(978)750-8400,fax(978)646-8600,or on the web at .Requests to the Publisher for permission should be addressed to the Permissi
4、ons Department,John Wiley&Sons,Inc.,11 1 River Street,Hoboken,NJ 07030,(201)748-601 1,fax(201)748-6008 or online at http:/ of Liability/Disclaimer of Warranty:While the publisher and author have used their best efforts in preparing this book,they make no representations or warranties with respect to
5、 the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.No warranty may be created or extended by sales representatives or written sales materials.The advice and strategies contained herein may
6、 not be suitable for your situation.You should consult with a professional where appropriate.Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages,including but not limited to special,incidental,consequential,or other damages.For general information
7、on our other products and services or for technical support,please contact our Customer Care Department within the US.at(800)762-2974,outside the US.at(317)572-3993 or fax(317)572-4002.Wiley also publishes its books in a variety of electronic formats.Some content that appears in print may not be ava
8、ilable in electronic format.For information about Wiley products,visit our web site at .Library of Congress Cataloging-in-Publication is available.ISBN-13 978-0-471-70858-2 ISBN-10 0-47 1-7085 8-5 Printed in the United States of America.10 9 8 7 6 5 4 3 2 1 CONTENTS Acknowledgments Acronyms List of
9、algorithms Introduction PART I INTRODUCTORY MATERIAL 1 Linear systems theory 1.1 1.2 1.3 1.4 1.5 1.6 Matrix algebra and matrix calculus 1.1.1 Matrix algebra 1.1.2 The matrix inversion lemma 1.1.3 Matrix calculus 1.1.4 The history of matrices Linear systems Nonlinear systems Discretization Simulation
10、 1.5.1 Rectangular integration 1.5.2 Trapezoidal integration 1.5.3 Rung-Kutta integration Stability xiii xv xvii xxi 3 4 6 11 14 17 18 22 26 27 29 29 31 33 V vi CONTENTS 2 1.6.1 Continuous-time systems 1.6.2 Discret6time systems 1.7 Controllability and observability 1.7.1 Controllability 1.7.2 Obser
11、vability 1.7.3 Stabilizability and detectability 1.8 Summary Problems Probability theory 2.1 Probability 2.2 Random variables 2.3 Transformations of random variables 2.4 Multiple random variables 2.4.1 Statistical independence 2.4.2 Multivariate statistics White noise and colored noise 2.5 Stochasti
12、c Processes 2.6 2.7 Simulating correlated noise 2.8 Summary Problems 3 Least squares estimation 3.1 3.2 3.3 3.4 3.5 Estimation of a constant Weighted least squares estimation Recursive least squares estimation 3.3.1 Alternate estimator forms 3.3.2 Curve fitting Wiener filtering 3.4.1 Parametric filt
13、er optimization 3.4.2 General filter optimization 3.4.3 Noncausal filter optimization 3.4.4 Causal filter optimization 3.4.5 Comparison Summary Problems 4 Propagation of states and covariances 4.1 Discretetime systems 4.2 Sampled-data systems 4.3 Continuous-time systems 33 37 38 38 40 43 45 45 49 50
14、 53 59 61 62 65 68 71 73 74 75 79 80 82 84 86 92 94 96 97 98 100 101 102 102 107 107 111 114 CONTENTS vii 4.4 Summary Problems 117 117 PART II THE KALMAN FILTER 5 The discretetime Kalman filter 5.1 5.2 Kalman filter properties 5.3 One-step Kalman filter equations 5.4 Alternate propagation of covaria
15、nce 5.4.1 Multiple state systems 5.4.2 Scalar systems Derivation of the discretetime Kalman filter 5.5 Divergence issues 5.6 Summary Problems 6 Alternate Kalman filter formulations 6.1 Sequential Kalman filtering 6.2 Information filtering 6.3 Square root filtering 6.3.1 Condition number 6.3.2 6.3.3
16、6.3.4 6.3.5 Algorithms for orthogonal transformations 6.4.1 6.4.2 6.5 Summary Problems The square root time-update equation Potters square root measurement-update equation Square root measurement update via triangularization 6.4 U-D filtering U-D filtering:The measurement-update equation U-D filteri
17、ng:The timeupdate equation 7 Kalman filter generalizations 7.1 7.2 Correlated process and measurement noise Colored process and measurement noise 7.2.1 Colored process noise 7.2.2 7.2.3 7.3 Steady-state filtering 7.3.1 a-/I filtering 7.3.2 a-p-y filtering 7.3.3 Kalman filtering with fading memory Co
18、lored measurement noise:State augmentation Colored measurement noise:Measurement differencing A Hamiltonian approach to steady-state filtering 7.4 123 124 129 131 135 135 137 139 144 145 149 150 156 158 159 162 165 169 171 174 174 176 178 179 183 184 188 188 189 190 193 199 202 203 208 viii CONTENTS
19、 7.5 Constrained Kalman filtering 7.5.1 Model reduction 7.5.2 Perfect measurements 7.5.3 Projection approaches 7.5.4 A pdf truncation approach 7.6 Summary Problems 8 The continuous-time Kalrnan filter 8.1 Discretetime and continuous-time white noise 8.1.1 Process noise 8.1.2 Measurement noise 8.1.3
20、Derivation of the continuous-time Kalman filter Alternate solutions to the Riccati equation 8.3.1 The transition matrix approach 8.3.2 The Chandrasekhar algorithm 8.3.3 The square root filter Generalizations of the continuous-time filter 8.4.1 8.4.2 Colored measurement noise The steady-state continu
21、ous-time Kalman filter 8.5.1 The algebraic Riccati equation 8.5.2 8.5.3 Duality 8.6 Summary Problems Discretized simulation of noisy continuous-time systems 8.2 8.3 8.4 Correlated process and measurement noise 8.5 The Wiener filter is a Kalman filter 9 Optimal smoothing 9.1 9.2 Fixed-point smoothing
22、 An alternate form for the Kalman filter 9.2.1 9.2.2 Smoothing constant states Estimation improvement due to smoothing 9.3 Fixed-lag smoothing 9.4 Fixed-interval smoothing 9.4.1 Forward-backward smoothing 9.4.2 RTS smoothing 9.5 Summary Problems 212 212 213 214 218 223 225 229 230 230 232 232 233 23
23、8 238 242 246 247 248 249 252 253 257 258 259 260 263 265 267 270 274 274 279 280 286 294 294 CONTENTS iX 10 Additional topics in Kalman filtering 10.1 Verifying Kalman filter performance 10.2 Multiplemodel estimation 10.3 Reduced-order Kalman filtering 10.3.1 Andersons approach to reduced-order fil
24、tering 10.3.2 The reduced-order Schmidt-Kalman filter 10.4 Robust Kalman filtering 10.5 Delayed measurements and synchronization errors 10.5.1 A statistical derivation of the Kalman filter 10.5.2 Kalman filtering with delayed measurements 10.6 Summary Problems PART 111 THE H,FILTER 11 The H,filter 1
25、1.1 Introduction 11.1.1 An alternate form for the Kalman filter 11.1.2 Kalman filter limitations 11.2.1 Static constrained optimization 11.2.2 Inequality constraints 11.2.3 Dynamic constrained optimization 11.3 A game theory approach to H,filtering 11.3.1 Stationarity with respect to 20 and Wk 11.3.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13.1-Optimal State Estimation导航定位系统 13.1 Optimal Estimation 导航 定位 系统
限制150内