2017年高考数学考前回扣教材8 计数原理.docx
《2017年高考数学考前回扣教材8 计数原理.docx》由会员分享,可在线阅读,更多相关《2017年高考数学考前回扣教材8 计数原理.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、回扣8计数原理1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,在第n类办法中有mn种方法,那么完成这件事共有Nm1m2mn种方法(也称加法原理).2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,做第n步有mn种方法,那么完成这件事共有Nm1m2mn种方法(也称乘法原理).3.排列 (1)排列的定义:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n
2、个不同元素中取出m个元素的排列数,用A表示.(3)排列数公式:An(n1)(n2)(nm1).(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,An(n1)(n2)21n!.排列数公式写成阶乘的形式为A,这里规定0!1.4.组合(1)组合的定义:从n个不同元素中取出m(mn)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示.(3)组合数的计算公式:C,由于0!1,所以C1.(4)组合数的性质:CC;CCC.5.二项式定理(ab)nCa
3、nCan1b1CankbkCbn(nN*).这个公式叫做二项式定理,右边的多项式叫做(ab)n的二项展开式,其中的系数C(k0,1,2,n)叫做二项式系数.式中的Cankbk叫做二项展开式的通项,用Tk1表示,即展开式的第k1项:Tk1Cankbk.6.二项展开式形式上的特点(1)项数为n1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.(4)二项式的系数从C,C,一直到C,C.7.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即CC.
4、(2)增减性与最大值:二项式系数C,当k时,二项式系数是递减的.当n是偶数时,那么其展开式中间一项的二项式系数最大.当n是奇数时,那么其展开式中间两项和的二项式系数相等且最大.(3)各二项式系数的和(ab)n的展开式的各个二项式系数的和等于2n,即CCCCC2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即CCCCCC2n1.1.关于两个计数原理应用的注意事项(1)分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步
5、骤相互依存,只有各个步骤都完成了才算完成这件事.(2)混合问题一般是先分类再分步.(3)分类时标准要明确,做到不重复不遗漏.(4)要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.2.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.3.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(
6、5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.4.对于二项式定理应用时要注意:(1)区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正.(2)运用通项求展开的一些特殊项,通常都是由题意列方程求出k,再求所需的某项;有时需先求n,计算时要注意n和k的取值范围及它们之间的大小关系.(3)赋值法求展开式中的系数和或部分系数和,常赋的值为0,1.(4)在化简求值时,注意二项式定理的逆用,要用整体思想看待a、b.1.用1,2,3三个数字组
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017年高考数学考前回扣教材8 计数原理 2017 年高 数学 考前 回扣 教材 计数 原理
限制150内