电力系统自动化实验报告.docx
《电力系统自动化实验报告.docx》由会员分享,可在线阅读,更多相关《电力系统自动化实验报告.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电力系统自动化实验报告实验一发电机组的启动与运转实验一实验目的:123了解微机调速装置的工作原理和掌握其操作方法。熟悉发电机组中原动机(直流电动机)的基本特性。掌握发电机组起励建压,并网,解列和停机的操作。原理说明:在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。THLZD-2型电力系统综合自动化实验台输电线路的具体结构如下图所示:调速系统的原理结构图:THLWT-2型 微机调速装置调节电路励磁电源ZKST5 型直流电机调速装置a b c自耦变压器QF7励磁变压器(D/Y)= UaUbU
2、cNU E Trr ttr j,* L-U / 电里木果俣玖J励磁功率部分 -& 亚崔 i -HiOP F XI、PTC,K 、4THLWL-3 型微机励磁装置(励磁控制部分)介微机准同期装置励磁系统的原理结构示意图三、 实验内容与步骤:1发电机组起励建压先将实验台的电源插头插入控制柜左侧的大四芯插座(两个大四芯插座可通用)。接着依次打开控制柜的“总电源”、“三相电源”和“单相电源”的电源开关;再打 开实验台的“三相电源”和“单相电源”开关。 将控制柜上的“原动机电源”开关旋到“开”的位置,此时,实验台上的“原动机 启动”光字牌点亮,同时,原动机的风机开始运转,发出“呼呼”的声音。 按下THL
3、WT-3型微机调速装置面板上的“自动/手动”键,选定“自动”方式,开 机默认方式为“自动方式”。 按下THLWT-3型微机调速装置面板上的启动”键,此时,装置上的增速灯闪烁, 表示发电机组正在启动。当发电机组转速上升到1500rpm 时,THLWT-3 型微机调速 装置面板上的增速灯熄灭,启动完成。当发电机转速接近或略超过1500rpm时,可手动调整使转速为1500rpm,即:按下 THLWT-3 型微机调速装置面板上的“自动/手动”键,选定“手动”方式,此时“手 动”指示灯会被点亮。按下THLWT-3 型微机调速装置面板上的“”键或“”键即 可调整发电机转速。发电机起励建压有三种方式,可根据
4、实验要求选定。一是手动起励建压;一是常规 起励建压;一是微机励磁。发电机建压后的值可由用户设置,此处设定为发电机额定 电压400V,具体操作如下:手动起励建压1) 选定“励磁调节方式”和“励磁电源”。将实验台上的“励磁调节方式”旋钮旋到 “手动调压”,“励磁电源”旋钮旋到 “他励”。2) 打开励磁电源。将控制柜上的“励磁电源”打到“开”。3) 建压。调节实验台上的“手动调压”旋钮,逐渐增大,直到发电机电压(线电压) 达到设定的发电机电压。常规励磁起励建压1) 选定“励磁方式”和“励磁电源”。将实验台上的“励磁方式”旋钮旋到“常规控 制”,“励磁电源”旋钮旋到 “自并励”或“他励”。2) 重复手
5、动起励建压步骤3) 励磁电源为“自并励”时,需起励才能使发电机建压。先逐渐增大给定,可调节 THLCL-2常规可控励磁装置面板上的“给定输入”旋钮,逐渐增大到3.5V 左右,按下 THLCL-2 常规可控励磁装置面板上的“起励”按钮然后松开,可以看到控制柜上的“发 电机励磁电压”表和“发电机励磁电流“表的指针开始摆动,逐渐增大给定,直到发 电机电压达到设定的发电机电压。4) 励磁电源为“他励”时,无需起励,直接建压。逐渐增大给定,可调节THLCL-2 常 规励磁装置面板上的“给定输入”旋钮,逐渐增大,直到发电机电压达到设定的发电 机电压。微机励磁起励建压1) 选定“励磁方式”和“励磁电源”。将
6、实验台上的“励磁方式”旋钮旋到“微机控 制”,“励磁电源”旋钮旋到 “自并励”或“他励”。2) 检查THLWL-3 微机励磁装置显示菜单的“系统设置”的相关参数和设置。具体如 下:“励磁调节方式”设置为实验要求的方式,此处为“恒Ug”。“恒Ug 预定值” 设置为设定的发电机电压,此处为发电机额定电压。“无功调差系数”设置为“+0” 具体操作见THLWL 微机励磁装置使用说明。3) 按下THLWL-3 微机励磁装置面板上的“启动”键,发电机开始起励建压,直至 THLWL-3微机励磁装置面板上的“增磁”指示灯熄灭,表示起励建压完成。2发电机组停机减小发电机励磁至0。 按下THLWT-3微机调速器装
7、置面板上的“停止”键。当发电机转速减为0时,将THLZD-2电力系统综合自动化控制柜面板上的“励磁电源”打到“关”,“原动机电源”打到“关”。3发电机组并网首先投入无穷大系统,具体操作参见第一部分“无穷大系统”,将实验台上的“发 电机运行方式”切至“并网”方式。打开控制柜的“总电源”、“三相电源”和“单 相电源”的电源开关;再打开实验台的“三相电源”和“单相电源”开关。 发电机与系统间的线路有“单回”和“双回”可选。根据实验要求选定一种,此处 选“单回”。单回:断路器QF1 和QF3(或者QF2、QF4 和QF6)处于“合闸”状态, 其他处断路器处于“分闸”状态;双回:断路器QF1、QF2、Q
8、F3、QF4 和QF6 处于“合闸”状态,其他处断路器处于“分闸”状态。合上断路器QF7,调节自耦调压器的手柄,逐渐增大输出电压,直到接近发电机电 压。 投入同期表。将实验台上的“同期表控制”旋钮打到“投入”状态。发电机组并网有三种方式,可根据实验要求选定。一是手动并网;一是半自动并网; 一是自动并网。为了保证发电机在并网后不进相运行,并网前应使发电机的频率和电 压略大于系统的频率和电压。手动并网: 所谓“手动并网”,就是手动调整频差和压 差,满足条件后,手动操作并网断路器实现并网。1) 选定“同期方式”。将实验台上的“同期方式”旋钮旋到“手动”状态。2) 观测同期表的指针旋转。同期时,以系统
9、为基准,fg fs 时同期表的相角指针顺时 针旋转,频率指针转到“+”的部分;UgUs 时压差指针转到“+”。反之相反。fg 和 Ug 表示发电机频率和电压;fs 和Us 表示系统频率和电压。根据同期表指针的位置, 手动调整发电机的频率和电压,直至频率指针和压差指针指向“0”位置。表示频率差 和压差接近于“0”,此时相角指针转动缓慢,当相角指针转至中央刻度时,表示相角差为“0”,此时按下断路器QF0 的“合闸”按钮。完成手动并网。4发电机组发出有功和无功功率调节励磁装置,调整发电机组发出的无功,使Q=0.75kVar, PF=0.8。具体操作:手动励磁:调节THLZD-2电力系统综合自动化实验
10、台上的“手动调压”旋钮,逐 步增大励磁,直到达到要求的无功值。常规励磁:调节THLCL-2常规可控励磁装置面板上的“给定输入”旋钮,逐步增 大给定,直至达到要求的无功值微机励磁:多次按下THLWL-3微机励磁装置面板上的“ + ”键,逐步增大励磁, 直至达到要求的无功值。调节调速器,调整发电机组发出的有功,具体操作:多次按下THLWT-3微机调速 装置“+”键,逐步增大发电机有功输出,使P=1kW。5发电机组解列将发电机组输出的有功和无功减为0。具体操作: 多次按下THLWT-3微机调速装置“一”键,逐步减少发电机有功输出,直至有功 接近0。调节励磁,减小无功。多次按下THLWL-3微机励磁装
11、置面板上的“一”键,逐步 减少发电机无功输出,直至无功接近于0。备注:在调整过程中,注意不要让发电机进相。 按下THLZD-2电力系统综合自动化实验台上的断路器QF0的“分闸”按钮,将发 电机组和系统解列。然后发电机停机,具体参照实验内容“ 2.发电机组停机”。四、 思考题:1、 为什么发电机组送出有功和无功时,先送无功?答:为了防止发电机发生近相运行。电机开始时大部分功用在磁路的饱和上和感性,容 性负载的偶合上,这些功都是无功,电压的波动主要由无功负荷引起的,当无功出现缺 额时,即感性负载过剩时,其对发电机产生去磁电枢反应,使气隙的磁场被削弱,端电压便降低。电压过低时会使电网中有功功率损耗和
12、电能损耗增加,还会危及电力系 统运行稳定性,先送无功有利于保证系统电压的稳定,提高供电质量。2、 为什么要求发电机组输出的有功和无功为0时才能解列?答:保护断路器,尽量不要带电流分闸,维护系统稳定。不发生功率突变,保护发电 机,避免突然甩负荷的冲击。如果有功负荷未减至零,解列时电磁制动力矩突然消失, 在汽机或水轮机过剩力矩的作用下引起机组超速。降有功到接近零是防止发电机突然 丢负荷造成汽轮机过速,降无功是防止发电机瞬间过电压。 无功负荷减到接近零就可 以了,这样还可以通过定子电流观察发电机出口开关是否非全相分闸。实验心得:这次发电机组的启动与运转实验,让我们对发电机组的启动有了深刻的 认识。在
13、发电机组运行时,为了防止发电机发生近相运行。电机开始时大部分功用 在磁路的饱和上和感性,容性负载的偶合上,这些功都是无功,电压的波动主要由无功负 荷引起的,当无功出现缺额时,即感性负载过剩时,其对发电机产生去磁电枢反应, 使气隙的磁场被削弱,端电压便降低。电压过低时会使电网中有功功率损耗和电能损 耗增加,还会危及电力系统运行稳定性,先送无功有利于保证系统电压的稳定,提高 供电质量。实验二 欠励限制实验一、实验目的1掌握欠励限制的作用、工作原理、特性曲线及其整定方法。2深入理解“V”形曲线和功率圆图,分析研究欠励运行与机组稳定的关系。 二、原理说明欠励限制的作用就是当发电机处于进相运行时,将其最
14、小励磁值限制在发电机临界 失步稳定 极限范围内,并且使最小励磁值不致低于发电机进相运行时定子端部绕组及 铁芯部件的发热允许范围。自并励方式励磁的同步发电机,当并列运行于容量不大而电压波动较大的电网中, 在电网电压升高时(比如由于电力系统高压线路空载运行,或无功补偿电容在电力系 统负荷低谷时未及时切除,造成系统无功过剩),自并励励磁系统由于电压负反馈的 调节作用,会自动使发电机励磁电流大幅度降低。当发电机励磁电流小于某一定值时, 其功率因数角将由滞后变为超前,发电机自动带上容性负载,即所谓“进相”运行, 进入“进相”的励磁状态称为“欠励”状态。根据凸极同步发电机的功率方程式:EUsUXd-Xa)
15、P 二一-Sin 5 +sin 25Xd-XL2(Xd 十 XZ)(Z 十 XZ)式中: P发电机有功功率;Eq发电机空载电势;Us系统电压;功角;XL线路电抗;Xd发电机纵轴同步电抗;Xq发电机横轴同步电抗。当P、U、Xd、Xq、XL确定后,励磁电流减少,引起Eq减少,必然导致功角增 大,当90时,电机失步。发电机运行的P (有功)一Q (无功)极限在电机理论中可 由功角特性得出同步发电机的V 形曲线(图3-2-6-1)或由功率圆图来确定(图3-2-6-2)。 由“V”形曲线可知,发电机带上不同的有功负载时,分别“进相”到不同程度后即失 去稳定。所以,当发电机带上某一有功功率时,为保证发电机
16、稳定运行,其最小励磁 电流由“V”形曲线就可确定。发电机所带有功负载越大,则允许“进相”的范围就越 小,即励磁电流最小限制值越高。最小励磁限制和最大容性无功功率(或电流)限制是同一回事。因为在发电机并 联运行情况下,容性无功功率的增大是欠激励磁电流减小的必然反应,因此欠激励磁电流的测量和最小励磁电流的限制都可以通过容性无功功率来实现。保持静态稳定极限所允许的PQ 关系,可由发电机的功角特性和静态稳定特性的条件dP/d=0 来推导。从而可作出保证静态稳定极限下的凸极同步发电机的PQ 关系功率圆图。PQ 关系功率圆图的半径及圆心的参数见图3-2-6-2 所示,图中虚线为凸极机的PQ 曲线。弧线的下
17、方为发电机失步运行区。静稳定条件下的功率圆图显然,为了保证机组有一定静稳定储备和避免水轮发电机由于欠励运行造成定子 端部发热,需要限制发电机的最小励磁电流,也就是相应地限制发电机的最大进相无 功电流(或功率)。当电网电压波动较大,而发电机容量相对较小,并且有灵敏的励磁调节器时,甚 至还可能发生因为电网电压升高,该机自动强减而失磁或自同期并网时发生失磁,因 此考虑这一因素,也有必要装设欠励限制电路。对于自复励的发电机,因有复励分量,可以不装设欠励限制。总之,欠励限制器的任务就是确保在任何情况下,限制发电机的进相无功不超过允许范围,当进相无功超过允许范围时,欠励限制器将限制励磁电流的减少。三、实验
18、内容与步骤1合上控制柜上的所有电源开关;然后合上实验台上的所有电源开关。合闸顺 序:先总开关,后三相开关,再单相开关。2选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机 控制”位置;将“励磁电源”旋钮开关打到“他励”位置。3发电机组和系统间的线路采用单回线,使实验台上的线路开关QF1 和QF3 处 于“合闸”状态, QF2,QF6,QF7,QF4 和QF5 处于“分闸”状态。4设置THLWL-3 微机励磁装置的“励磁调节方式”为“恒Ug”;设置THLWL-3 微机励磁装置的“恒Ug 预定值”为“300V”;具体操作见THLWL 微机励磁装置使 用说明。5发电机组起励建压(具体
19、操作见第一章),使原动机转速为1500rpm,发电机电压 为300V。6调节系统电压为300V。7发电机组与系统并网。(具体操作见第一章)8设置微机励磁装置的低励限制斜率,低励磁限制截距。限制曲线按照公式 Q=KdP/128-Kb。9调节有功功率输出分别为0、50%和100%的额定负载。用减小励磁电流(按下 THLWL-3微机励磁装置面板上的“”键)的方法使发电机组进相运行,直到欠励限 制器动作(欠励限制指示灯亮),记下此时的有功功率P 和无功功率Q 于表3-2-6-1 中; 10根据实验数据作出欠励限制曲线P=f(Q),并计算出该直线的斜率和截距。欠励限制实验心得体会这次实验让我们掌握欠励限
20、制的作用、工作原理、特性曲线及其整定方法。深入 理解“V”形曲线和功率圆图,分析研究欠励运行与机组稳定的关系。欠励限制的作用 就是当发电机处于进相运行时,将其最小励磁值限制在发电机临界失步稳定 极限范围 内,并且使最小励磁值不致低于发电机进相运行时定子端部绕组及铁芯部件的发热允 许范围。自并励方式励磁的同步发电机,当并列运行于容量不大而电压波动较大的电 网中,在电网电压升高时(比如由于电力系统高压线路空载运行,或无功补偿电容在 电力系统负荷低谷时未及时切除,造成系统无功过剩),自并励励磁系统由于电压负 反馈的调节作用,会自动使发电机励磁电流大幅度降低。当发电机励磁电流小于某一 定值时,其功率因
21、数角将由滞后变为超前,发电机自动带上容性负载,即所谓“进相” 运行,进入“进相”的励磁状态称为“欠励”状态。在老师的指导下我们完成了这次 实验,感谢顾老师的耐心指导,谢谢。实验三 调差实验一、实验目的1深入理解调差原理,掌握改变发电机电压调节特性斜率的方法。2多台机组在同一母线上并联运行时,无功功率分配与无功调节特性的关系。3理解调差系数的涵义及其发电机外特性曲线。二、原理说明为了改变发电机外特性曲线,使并列运行的各台机组之间合理分配无功负荷,或 者为了维持系统某一点电压恒定,在负荷变化时,要对电力网电压损耗进行补偿,因 而设置了无功调差电路。常用的电流调差电路有两种:一是取两相电流信号;二是
22、取 单相电流信号。因为发电机输出端电压主要与负载电流的无功分量有关,故引入的电 流信号滞后于相应的电压信号90。电流调差电路的工作原理:主要是利用电流信号在调差电阻R 上的压降,迭加到 测量电压信号上去,从而使发电机的外特性陡度发生变化。当上述压降叠加后使外特 性陡度向右下方向倾斜时,为正调差特性,如图3-2-8-1 曲线3,表现为负载无功电流 增加时,端电压下降,改变正调差系数(即直线陡度),可使并列运行机组之间按合 理比例稳定地分配无功负荷;如果将中间电流互感器ZTA 的极性反接,则使外特性陡 度向右上方倾斜,为负调差特性,如图3-2-8-1 曲线4,表现为负载无功电流增加时,端电压上升,
23、适用于电力系统要求某点电压恒定、在 负荷增加时需要补偿线路和变压器电压损耗的特殊场合;当调差电阻经切换开关短接 时,则调差电路基本不起作用,为自然调差,如图3-2-8-1 曲线2。发电机外特性曲线如下:U1 .无差调节特性2 .自然调节特性3 .正调差特性4 .负调差特性1零调差实验设置THLWL-3微机励磁装置的“无功调差系数”为“0。具体操作参见附录三THLWL微机励磁装置使用说明。降低系统电压来增加发电机无功输出。可通过调节15kVA自耦调压器来降低系统电压,记录Ug 和Q 数值到表3-2-8-1,并在图3-2-8-2 内作出调节特性曲线。2正调差实验 设置THLWL-3微机励磁装置的“
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力系统 自动化 实验 报告
限制150内