risk return and cost of capital风险回报和资本成本.pptx
《risk return and cost of capital风险回报和资本成本.pptx》由会员分享,可在线阅读,更多相关《risk return and cost of capital风险回报和资本成本.pptx(74页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Return,Risk,andtheSecurityMarketLinenTypesofReturnsnExpectedReturnsandVariancesnPortfoliosnAnnouncements,Surprises,andExpectedReturnsnRisk:SystematicandUnsystematicnDiversificationandPortfolioRisknSystematicRiskandBetanTheSecurityMarketLinenTheSMLandtheCostofCapitalnSummaryandConclusionsTypesofRetur
2、nsnTotalMonetaryreturn=DividendIncome+CapitalGainuEganinvestmentof1000risesinvalueto1500providingacapitalgainof500.Overthesameperiodthedividendincomeis5%=50.Totalreturnisthen500+50=550.uTotalmonetaryreturnisanabsolutemeasureofreturns.Ittellsyouhowmuchmoneyyouhavemadeins.ItisoftenmoreusefultoknowtheP
3、ercentageReturn.nThePercentageReturnisthetotalmonetaryreturndividedbytheamountofcapitalinvested.nPercentageReturn=Dividends+CapitalGainsamountinvestedOrRit=Dit+(PitPit-1)=Div.Yield+%capitalgainPit-1ExpectedReturnsandVariances:BasicIdeasnThequantificationofriskandreturnisacrucialaspectofmodernfinance
4、.Itisnotpossibletomake“good”(i.e.,value-maximizing)financialdecisionsunlessoneunderstandstherelationshipbetweenriskandreturn.nRationalinvestorslikereturnsanddislikerisk.nConsiderthefollowingproxiesforreturnandrisk:Expectedreturn-weighted average of the distribution of possible returns in the future.
5、Varianceofreturns-a measure of the dispersion of the distribution of possible returns in the future.Howdowecalculatethesemeasures?.CalculatingtheExpectedReturn.Example1sE(R)=(pixRi)i=1piRiProbabilityReturninipixRiStateofEconomyofstateistatei+1%changeinGNP.25-5%i=1-1.25%+2%changeinGNP.5015%i=27.5%+3%
6、changeinGNP.2535%i=38.75%Expectedreturn=(-1.25+7.50+8.75)=15%CalculatingtheVariance(Example1ofCalculatingtheexpectedreturn)Var(R)i(RiE(R)2pix(RiE(R)2i=1(-0.05-0.15)2=0.04 0.25*0.04=0.01i=2(0.15-0.15)2=00.5*0=0i=3(0.35-0.15)2=0.040.25*0.04=0.01Var(R)=.02Whatisthestandarddeviation?ExpectedReturnsandVa
7、riancesExample2StateoftheProbabilityReturnonReturnoneconomyofstateassetAassetBBoom0.4030%-5%Bust0.60-10%25%1.00nA.ExpectedreturnsE(RA)=0.40 x(.30)+0.60 x(-.10)=.06=6%E(RB)=0.40 x(-.05)+0.60 x(.25)=.13=13%Example:ExpectedReturnsandVariances(concluded)nB.VariancesVar(RA)=0.40 x(.30-.06)2+0.60 x(-.10-.
8、06)2=.0384Var(RB)=0.40 x(-.05-.13)2+0.60 x(.25-.13)2=.0216nC.StandarddeviationsSD(RA)=.0384=.196=19.6%SD(RB)=.0216=.147=14.7%CalculatingExpectedReturnsandVarianceinpracticenThemostcommonmethodistouseatimeseriesofreturnscalculatedfrompastpricesanddividends.dayBP pricediv.Ret.=Ret.Monday4300Tuesday435
9、0(435-430)/4300.0116Wednesday4370(437-435)/4350.0046Thursday4410(441-437)/4370.0092Friday4350(435-441)/441-0.0136Monday4350(435-435)/4350.0000Tuesday4200(420-435)/435-0.0345CalculatingExpectedReturnsandVarianceinpractice(2)nE(Ri)isassumedtobeequaltothesampleaveragereturnn=(0.0116+0.0046+0.0092-0.013
10、6+0-0.0345)/6n=-0.00378nTocalculatethevariancewecalculatethedeviationforeachdaysreturnfromtheexpectedreturn,squaretomakeitpositiveandthendividebyn-1.Inthiscasen=6.CalculatingExpectedReturnsandVarianceinpractice(3)Ret.Rit-E(Rit)(Rit-E(Rit)20.01160.01540.000240.00460.00840.000070.00920.01290.00017-0.0
11、136-0.00980.000100.00000.00380.00001-0.0345-0.03070.00094-0.003780.00031MeasuringrisknIfweweretoplotthedailyreturnsonasecurityoveralongperiodthenitmightlooksomethinglikeanormaldistribution(picturenextslide)nWhatwewanttodoistosummarisethispictureassimplyaspossible.Themeanistheexpectedreturn,thespread
12、orvariationisthestandarddeviationorvariance.WearguethatthisspreadrepresentsrisktoinvestorsandhencethattheSt.Dev.orvarianceisameasureoftheriskofashare.nInfactreturndistributionsdontusuallylookexactlylikethis.Theytendtohaveatruncatedlefttailandalongerrighttail.Variancemaynotbethebestmeasureofrisk.Desc
13、ribingadistributionPortfolioExpectedReturnsandVariancesnWhatwehavedonesofarisdescribetheriskandreturnofindividualsecurities.Wealsowanttobeabletodescribetheriskandreturnofportfoliosofsecurities.nWehavetwoequivalentalternativesopentous.uComponent-Wecandeterminethereturnandriskoftheportfoliobycombining
14、thereturnsandrisksofthesecuritiesthatmakeuptheportfolio.uSecurity-Wecantreattheportfolioasjustanothersecurityandcalculateitsreturnandriskaswehavebeendoing.nBothoftheseapproachesgivethesameanswerbutthefirstallowsustoseehowindividualsecuritiesaffectthereturnandriskofaportfolio.PortfolioExpectedReturns
15、andVariances(usingreturnsfromExample2)nPortfolioweights:put50%inAssetAand50%inAssetB:StateoftheProbabilityReturnReturnReturnoneconomyofstateonAonBportfolioBoom0.4030%-5%12.5%Bust0.60-10%25%7.5%1.00Example:PortfolioExpectedReturnsandVariances(continued)Calculateexpectedreturns:SecurityapproachE(RP)=0
16、.40 x(.125)+0.60 x(.075)=.095=9.5%ComponentapproachE(RP)=.50 xE(RA)+.50 xE(RB)=9.5%Calculatevarianceofportfolio:SecurityapproachVar(RP)=0.40 x(.125-.095)2+0.60 x(.075-.095)2=.0006PortfolioapproachThesumofthevariancesisnotthevarianceoftheportfolioVar(RP).50 xVar(RA)+.50 xVar(RB)FtthisweeknOlympussaga
17、continuesresignationofPresident,openletterbymajorshareholder,questions(atlast!)byJapanesePressandGovernment.nEurozonethedealmoreofthesame,bigger(voluntary)haircuts,moreausteritybutthedebtorstrikesback(Greekreferendum).nMFGlobalcollapsebroker-dealersufferingfromeurozoneratingsdowngrades($6.3bnexposur
18、e).nManagementgreedhugeincreaseinseniormanagementpayoverlastyear.TheStorysofarnOuraimistorelatereturntorisk.Basicprincipleisthatinvestorsrequirearewardfortakingonrisk.Thelargertherisk,thelargerthereward.nButhowarewetomeasureriskandreturn?nManydifferenttypesofrisk.Weconcentrateonriskasperceivedbythec
19、apitalmarkets.nThepriceofashareatanytimereflectseverythingthatisknownaboutthecompany.Suggeststhatwecanusepricechangestoprovideinformationaboutthecompany.nByexaminingthedistributionofpercentagepricechanges(returns)wecandeterminethelikelyorexpectedreturn,andthedispersionofreturnsthatmightoccur.Thestor
20、ysofar(2)nAnobviousmeasureofexpectedreturnisthearithmeticmean.Ameasureofdispersionisthevariance.Thisisusedasameasureoftheriskofashare.Thevarianceisareasonablemeasureifthedistributionofreturnsissymmetric.nMostcompaniesarenotheldinisolationbutareheldaspartofaportfolio.Weusetwoshareportfoliostodemonstr
21、atehowriskchanges.TheproportionofeachcompanyintheportfolioisknownastheportfolioWeight.nOurinterestisinhowonecompanyrelatestoanother.Weareconcernedaboutthejoint distribution of returns.JointDistributionofreturnsprobabilityReturnonSecurityXReturnonSecurityYCovarianceandCorrelationTheCovarianceisameasu
22、reofhowthetwosecuritiesarerelated.SimilartoVariancebutusescrossdeviations.Variance=E(RAtE(RAt)(RAtE(RAt)Covariance=average(deviationofreturnonAfromitsmean)*(deviationofreturnonBfromitsmean)CAB=E(RAtE(RAt)(RBtE(RBt)CorrelationisastandardisedCovariance.CorrelationbetweenAandBistheCovariancebetweenAand
23、BdividedbythestandarddeviationofAtimesthestandarddeviationofB.AB=CovAB/A BCovarianceandCorrelationnTheriskofaportfolioiscomprisedoftheriskoftheindividualsecuritiesplusthecorrelationbetweenthem.nIftherearetwosecuritiesthentheriskoftheportfoliocanbecalculatedfromthevarianceofeachsecurityplusthecorrela
24、tionbetweenthem.nFortwosecuritieswehave:n p2=X12Var1+X22Var2+2X1X2Cov12Remember:Cov12=1 2 12 p2=X12 12+X22 22+2X1X2 1 2 12Cov12=E(R1t-E(R1t)(R2t-E(R2t)=E(R2t-E(R2t)(R1t-E(R1t)=Cov21TwosecurityPortfolioSelectionExampleRpt=X1R1t+X2R2tE(Rpt)=E(X1R1t+X2R2t)=X1E(R1t)+X2E(R2t)p2=E(Rpt-E(Rpt)2p2=EX1R1t+X2R
25、2t-(X1E(R1t)+X2E(R2t)2p2=EX1(R1t-E(R1t)+X2(R2t-E(R2t)2Fromalgebraweknowthat(a+b)2=a2+b2+2abp2=X12E(R1t-E(R1t)2+X22E(R2t-E(R2t)2+2X1X2E(R1t-E(R1t)(R2t-E(R2t)=X1212+X2222+2X1X2Cov12HowCorrelationaffectsrisk(2securityexample)HowCorrelationaffectsrisk(2securityexample)HowCorrelationaffectsrisk(2security
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- risk return and cost of capital风险回报和资本成本 capital 风险 回报 资本 成本
限制150内