高中数学讲义——恒成立问题——数形结合法.doc
《高中数学讲义——恒成立问题——数形结合法.doc》由会员分享,可在线阅读,更多相关《高中数学讲义——恒成立问题——数形结合法.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、微专题23 恒成立问题数形结合法一、基础知识:1、函数的不等关系与图像特征:(1)若,均有的图像始终在的下方(2)若,均有的图像始终在的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图像中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图像,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是
2、利用图像变换作图(2)所求的参数在图像中具备一定的几何含义(3)题目中所给的条件大都能翻译成图像上的特征二、典型例题:例1:已知不等式在上恒成立,则实数的取值范围是_思路:本题难于进行参变分离,考虑数形结合解决,先作出的图像,观察图像可得:若要使不等式成立,则的图像应在的上方,所以应为单增的对数函数,即,另一方面,观察图像可得:若要保证在时不等式成立,只需保证在时,即可,代入可得:,综上可得:答案:小炼有话说:(1)通过常系数函数图像和恒成立不等式判断出对数函数的单调性,进而缩小了参数讨论的取值范围。(2)学会观察图像时要抓住图像特征并抓住符合条件的关键点(例如本题中的)(3)处理好边界值是否
3、能够取到的问题例2:若不等式对于任意的都成立,则实数的取值范围是_思路:本题选择数形结合,可先作出在的图像,扮演的角色为对数的底数,决定函数的增减,根据不等关系可得,观察图像进一步可得只需时,即,所以答案:例3:若不等式对任意恒成立,求的取值范围思路:恒成立不等式变形为,即的图像在图像的上方即可,先作出的图像,对于,可看作经过平移得到,而平移的距离与的取值有关。通过观察图像,可得只需,解得:答案: 小炼有话说:在本题中参数的作用是决定图像平移变换的程度,要抓住参数在图像中的作用,从而在数形结合中找到关于参数的范围要求例4:若,不等式恒成立,则的取值范围是_思路:本题中已知的范围求的范围,故构造
4、函数时可看作关于的函数,恒成立不等式变形为 ,设,即关于的一次函数,由图像可得:无论直线方向如何,若要,只需在端点处函数值均大于0即可,即,解得:或答案:或小炼有话说:(1)对于不等式,每个字母的地位平等,在构造函数时哪个字母的范围已知,则以该字母作为自变量构造函数。(2)线段的图像特征:若两个端点均在坐标轴的一侧,则线段上的点与端点同侧。(3)对点评(2)的推广:已知一个函数连续且单调,若两个端点在坐标轴的一侧,则曲线上所有点均与端点同侧例5:已知函数,若对任意的,都有成立,则实数的取值范围是_m+1m思路:恒成立的不等式为,如果进行参变分离,虽可解决问题,但是因为所在区间含参,的取值将决定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 讲义 成立 问题 结合
限制150内