高中数学讲义—— 新信息背景下的数列问题.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学讲义—— 新信息背景下的数列问题.doc》由会员分享,可在线阅读,更多相关《高中数学讲义—— 新信息背景下的数列问题.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、微专题59 新信息背景下的数列问题 含“新信息”背景的数列问题,以其难度通常位于试卷的最后一题。此类问题有以下几个难点:一是对于新的概念与规则,学生在处理时会有一个熟悉的过程,不易抓住信息的关键部分并用于解题之中,二是学生不易发现每一问所指向的知识点,传统题目通常在问法上就直接表明该用哪些知识进行处理,例如“求通项,求和”。但新信息问题所问的因为与新信息相关,所以要运用的知识隐藏的较深,不易让学生找到解题的方向。三是此类问题在设计时通常注重几问之间的联系,即前面问题的处理是为了最后一问做好铺垫。但学生不易发现其中联系,从而导致在处理最后一问时还要重整旗鼓,再加上可能要进行的分类讨论,解题难度陡
2、然增加。本节通过10道例题来说明如何对这种“新信息”题目进行理解与分析,如何寻找到解题的突破口与思路一、基础知识:1、此类问题常涉及的知识点(1)等差数列与等比数列的性质与求和公式(2)数列的单调性(3)放缩法证明不等式(4)简单的有关整数的结论(5)数学归纳法与反证法2、解决此类问题的一些技巧:(1)此类问题在设立问题中通常具有“环环相扣,层层递进”的特点,第(1)问让你熟悉所创设的定义与背景,第(2),(3)问便进行进一步的应用,那么在解题的过程中要注意解决前面一问中的过程与结论,因为这本身就是对“新信息”的诠释与应用。抓住“新信息”的特点,找到突破口,第(2)(3)问便可寻找到处理的思路
3、(2)尽管此类题目与传统的数列“求通项,求和”的风格不同,但其根基也是我们所学的一些基础知识与方法。所以在考虑问题时也要向一些基本知识点靠拢,弄清本问所考察的与哪个知识点有关,以便找到一些线索。(3)在分类讨论时要遵循“先易后难”的原则,以相对简单的情况入手,可能在解决的过程中会发现复杂情况与该情况的联系,或者发现一些通用的做法与思路,使得复杂情况也有章可循。二、典型例题:例1:定义:若对任意,数列的前项和都为完全平方数,则称数列为“完全平方数列”;特别的,若存在,使得数列的前项和为完全平方数,则称数列为“部分平方数列”(1)若数列为“部分平方数列”,且,求使数列的前项和为完全平方数时的值(2
4、)若数列的前项和,那么数列是否为“完全平方数列”?若是,求出的值;若不是,请说明理由(3)试求所有为“完全平方数列”的等差数列解:(1)思路:依题意可知先求出的表达式,再根据表达式的特点寻找到完全平方式即可时, 时,时,是完全平方数(2)思路:若要观察的前项和是否为完全平方数,则要先求出的通项公式。由可求得,因为为完全平方式,所以若有些项为中对应项的相反数,则再求和时很有可能不是完全平方数。根据时,可知只有时,恒大于0,即,所以是“完全平方数列”;时,中存在部分项小于0,可知不是“完全平方数列”解:时, 时, 当,时, 的前项和即为,所以为“完全平方数列”当时,不是完全平方数不是“完全平方数列
5、”综上所述:时,是“完全平方数列”,时,不是“完全平方数列”(3)思路:依题意可知该等差数列的前项和公式应为完全平方式,由等差数列求和公式出发,可将其通过配方向完全平方式进行靠拢,可得:,所以有,再根据利用整数的特性求解即可。解:设所求等差数列 的首项为,公差为 若为“完全平方数列”则,为完全平方式 由可令 由令,可得: 代入到可得: 或 当时, 当时, 当时,符合上式综上所述, 例2:已知数列的前项和为,且满足,设,(1)求证:数列是等比数列;(2)若,求实数的最小值;(3)当时,给出一个新数列,其中设这个新数列的前项和为,若可以写成 (且)的形式,则称为“指数型和”问中的项是否存在“指数型
6、和”,若存在,求出所有“指数型和”;若不存在,请说明理由(1)思路:证明为等比数列,可以利用条件中的作为中间桥梁寻找的关系,则有,只需找到的关系,由及可得:,进而代入解出 解: 为公比是的等比数列 (2)思路:由(1)可解出,进而可求出,由可在的情况下得到关于的恒成立不等式,从而通过参变分离可求出的范围:,再验证是否成立即可解:由(1)可得: 时, 时, 即 当时,成立 (3)思路:时,可代入求出,从而,利用“指数型和”的定义,可先求出前项和,从而将问题转化为可否写成的形式,本题不便将变形为的形式,所以考虑利用等式转化为方程是否有解的问题。即判断是否有解。,为偶数时,为奇数时,。而只是个2相乘
7、,所以可通过对分解后的每个因式能否表示为的形式进行讨论即可。解:由(1)可得:当时, 当时,时, 假设中的项存在“指数型和”,则使得: 当为偶数时:设,则 可解得: ,即,为“指数型和”当为奇数时,若为偶数,则为奇数,为奇数为奇数,若为奇数,则为偶数,为个奇数之和也为奇数 当为奇数时,不存在“指数型和”综上所述:只有为“指数型和” 例3:如果存在常数使得数列满足:若是数列中的一项,则也是数列中的一项,那么就称数列为“兑换数列”,常数是它的“兑换系数”(1)若数列:是“兑换系数”为的“兑换数列”,求和的值(2)若有穷递增数列是“兑换系数”为的“兑换数列”,求证:数列的前项和 (3)已知有穷等差数
8、列的项数是,所有项之和是,试判断数列是否为“兑换数列”?如果是,给予证明,并用和表示它的“兑换系数”;如果不是,请说明理由(1)思路:依照“兑换数列”的定义可知,应均在数列中,在第(1)问中涉及两个变量,故考虑寻找两个等量,通过方程解决。其最重要的等量关系就是找到是数列中的哪一项。通过排序可知,则通过不等式性质可知:,此数列一共就4项且单调递增,所以得,从而解得 解:由已知可得:在“兑换数列”中,且 也在该数列中,且 (2)思路:第(1)问提供了这样一个思路:如果数列是有限数列且单调,则由对应生成的数列也单调,且单调性相反。由“兑换数列”的定义即可知两个数列中项应存在相等关系。所以利用这个特征
9、可知在中,由且能够得到,即,根据首尾和是个常数的特点可知求和时使用倒序相加法即可得到 解:不妨设有穷数列的项数为 为递增数列 即 (3)思路:由(2)可得:若有穷单调数列 为“兑换数列”,则要满足。那么在等差数列 中,有性质当且仅当,所以就可得到:,且等差数列若不是常数列,则为单调数列。由这两点并结合(2)的思路则可证明等差数列均为“兑换数列”,再通过等差数列前项和公式即可解出数列是“兑换数列”,证明如下:设的公差为 若,则递增 设,由可得: 同理,若,则递减 若,则为常数列,只需即可,则 为“兑换数列” 由(2)可知: 例4:设数列满足:;所有项;来设集合,将集合中的元素的最大值记为,即是数
10、列中满足不等式的所有项的项数的最大值我们称数列为数的伴随数列例如,数列1,3,5的伴随数列为1,1,2,2,3(1)若数列的伴随数列为1,1,1,2,2,2,3,请写出数列;(2)设,求数列的伴随数列的前30项之和;(3)若数列的前项和(其中常数),求数列的伴随数列的前项和(1)思路:首先要根据例子及定义理解什么是“伴随数列”,“是数列中满足不等式的所有项的项数的最大值”,则意味着每取一个值,则可通过解不等式得到的最大值即为,那么按此规律可知在(1)中,说明在中,小于等于3的只有1项,即,则,所以,同理,则 解: (2)思路:由(1)可知:伴随数列中的项即为解不等式得到的最大值,本题已知,则可
11、建立不等式,则对取每一个值,计算的最大值即可。例如,则;,则;以此类推便可寻找到规律,即时,即,抓住这个规律即可得到的前30项,进而求和 若考虑解关于的不等式 当时, 当时, 当时, 当时, 的前30项和为 (3)思路:已知即可求出数列的通项公式,再结合(2)对“伴随数列”定义的使用,即可建立不等式,从而可得到:,根据项的的特点可考虑以相邻两项为一组进行求和,则需对项数进行奇偶分类讨论,进而得到 ,则 解关于的不等式 时,即 当时,即 综上所述: 例5:对于数列,若满足,则称数列为“数列”,定义变换:将“数列”中原有的每个1都变成,原有的每个0都变成.例如:,则,设是“数列”,令 (1)若数列
12、,求数列 (2)若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由(3)若,记数列中连续两项都是的数对个数为,求关于的表达式(1)思路:依题意可知变换的特点为1项分裂为2项,所以可将中的项两两一组,再根据规则即可还原为,照此方法即可得到 解:由变换的规则可知: (2)思路:首先可先观察两次变换的特点,可知,发现无论是从1开始还是从0开始,两次变换后均可得到一对相邻的数,且首尾也相同,这意味着若中若含相邻的数,则两次变换后这两个数生成的数首尾也将连接成相邻的数对,例如:。进而可知:共有10项,那么两次变换后至少会有对,(例如当时)若作两次变换:,中的每一项通过两次变换均生成一对
13、两项相等的数对,所以至少有10对(3)思路:依题意可将视为一个数列,则所求即为该数列的通项公式。由数列的知识可知,求通项公式常用的手段有三种:利用数列中的项寻找规律并证明;通过递推公式;通过求和公式。所以若不愿列出具体项寻找规律,则需要先找到关于的一个递推公式,即寻找第次变换与前几次变换数对的联系。由(2)可知,若产生数对,则上一步只能为,所以数对的个数与上一步数对(记为)的个数相同。即,再考虑数对的来源,共有两个,一个是由上一步的得到,一个是由上一步的得到由变换的规则及(2)可知:中数对只能由中的数对生成,中的1共有个(因为每一次变换生成相同个数的,所以中含个1,个0),所以,联立两个等式可
14、得:,消去即可得到关于的递推公式,然后再求得的通项公式即可解:设中有个数对 另一方面:,且中和的总个数相等 中项有个中有个,有个而中的数对从处只有两条途径能够得到:一个是由中的得到(个),一个是由中的得到(个) 由可得: 由,可得: 当为偶数时 当为奇数时: 综上所述: 例6:已知数列是正整数的一个全排列,若对每个都有或,则称为数列(1)写出满足的所有数列 (2)写出一个满足的数列的通项公式(3)在数列中,记,若数列是公差为的等差数列,求证:或 解:(1)或(2)思路:中的项为的一个全排列,所以在构造最好符合一定的规律,以便于写出通项公式,由(1)的启发可知的前5个数可为第(1)问中的一种情况
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学讲义 新信息背景下的数列问题 高中数学 讲义 信息 背景 数列 问题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内