高中数学讲义——利用几何关系求解圆锥曲线问题.doc
《高中数学讲义——利用几何关系求解圆锥曲线问题.doc》由会员分享,可在线阅读,更多相关《高中数学讲义——利用几何关系求解圆锥曲线问题.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、微专题74 利用几何关系求解最值问题一、基础知识:1、利用几何关系求最值的一般思路:(1)抓住图形中的定点与定长,通常与求最值相关(2)遇到线段和差的最值,经常在动点与定点共线的时候取到。因为当动点与定点不共线时,便可围成三角形,从而由三角形性质可知两边之和大于第三边,两边之差小于第三边,无法取得最值。所以只有共线时才有可能达到最值。要注意动点与定点相对位置关系。一般的,寻找线段和的最小值,则动点应在定点连成的线段上;若寻找线段差的最小值,则动点应在定点连成的线段延长线上。(3)若所求线段无法找到最值关系,则可考虑利用几何关系进行线段转移,将其中某些线段用其它线段进行表示,进而找到最值位置(4
2、)处理多个动点问题时,可考虑先只让一个动点运动,其他动点不动,观察此动点运动时最值选取的规律,再根据规律让其他点动起来,寻找最值位置。2、常见的线段转移:(1)利用对称轴转移线段(详见例1)(2)在圆中,可利用与半径相关的直角三角形(例如半弦,圆心到弦的垂线,半径;或是切线,半径,点与圆心的连线)通过勾股定理进行线段转移。(3)在抛物线中,可利用“点到准线的距离等于该点到焦点的距离”的特点进行两个距离的相互转化。(4)在椭圆中,利用两条焦半径的和为常数,可将一条焦半径转移至另一条焦半径(5)在双曲线中,利用两条焦半径的差为常数,也可将一条焦半径转移至另一条焦半径(注意点在双曲线的哪一支上)3、
3、与圆相关的最值问题:(1)已知圆及圆外一定点,设圆的半径为则圆上点到点距离的最小值为,最大值为(即连结并延长,为与圆的交点,为延长线与圆的交点(2)已知圆及圆内一定点,则过点的所有弦中最长的为直径,最短的为与该直径垂直的弦解:,弦长的最大值为直径,而最小值考虑弦长公式为,若最小,则要取最大,在圆中为定值,在弦绕旋转的过程中, ,所以时,最小(3)已知圆和圆外的一条直线,则圆上点到直线距离的最小值为,距离的最大值为(过圆心作的垂线,垂足为,与圆交于,其反向延长线交圆于 (4)已知圆和圆外的一条直线,则过直线上的点作圆的切线,切线长的最小值为解:,则若最小,则只需最小即可,所以点为过作垂线的垂足时
4、,最小过作圆的切线,则切线长最短4、与圆锥曲线相关的最值关系:(1)椭圆:设椭圆方程为 焦半径:焦半径的最大值为,最小值为 焦点弦:焦点弦长的最小值称为通径,为,此时焦点弦与焦点所在的坐标轴垂直(2)双曲线:设双曲线方程为 焦半径:焦半径的最小值为,无最大值 焦点弦:焦点弦长的最小值称为通径,为,此时焦点弦与焦点所在的坐标轴垂直(3)抛物线:设抛物线方程为 焦半径:由抛物线的焦半径公式可知:焦半径的最小值为原点到焦点的距离,即 焦点弦:当焦点弦与焦点所在坐标轴垂直时,弦长最小,为 二、典型例题:例1:已知在平面直角坐标系中,点,为轴上一动点,则的最小值为_思路:从所求可联想到三点不共线时,三角
5、形两边之和大于第三边(而三点共线时可能相等),由已知可得:,但从图像上发现无论在何处,无法取到等号。(即使共线时等号也不成立),为了取到最值。考虑利用对称转移所求线段。作关于轴的对称点,从而有,所以转化为,可知当三点共线时,即答案: 小炼有话说:(1)三点共线取得最值的条件:动点位于两定点之间时,则距离和取到最小值。同理;当动点位于两定点同一侧时,距离差的绝对值取到最大值。(2)处理线段和(差)最值问题时,如果已知线段无法找到最值关系,则可考虑利用“线段转移法”,将某一线段替换成另一长度相等线段,从而构造出取得最值的条件例2:设抛物线上一点到此抛物线准线的距离为,到直线的距离为,则的最小值为(
6、 )A. B. C. D. 思路:通过作图可观察到直接求的最值比较困难,所以考虑转移某个距离,由已知可得为到准线的距离,所以可根据抛物线定义转移为(其中是抛物线的焦点,),所以,观察图像可得:答案:A例3:已知过抛物线的焦点的弦与抛物线交于两点,过分别作轴的垂线,垂足分别为,则的最小值为_思路:设抛物线的准线为,由抛物线可知 ,观察图像可知。而由抛物线定义可得:,所以,即要求出的最小值,只需求出的最小值,即抛物线焦点弦的最小值,由抛物线性质可知当轴时,最小,所以 答案: 例4:已知点在抛物线的准线上,过点作抛物线的切线,若切点在第一象限,是抛物线的焦点,点在直线上,点在圆上,则的最小值为( )
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 讲义 利用 几何 关系 求解 圆锥曲线 问题
限制150内