高中数学讲义——不等式选讲.doc





《高中数学讲义——不等式选讲.doc》由会员分享,可在线阅读,更多相关《高中数学讲义——不等式选讲.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、微专题97 不等式选讲一、基础知识:(一)不等式的形式与常见不等式:1、不等式的基本性质:(1) (2)(不等式的传递性)注:,等号成立当且仅当前两个等号同时成立(3) (4) (5) (6)2、绝对值不等式: (1)等号成立条件当且仅当 (2)等号成立条件当且仅当 (3):此性质可用于求含绝对值函数的最小值,其中等号成立当且仅当 3、均值不等式(1)涉及的几个平均数: 调和平均数: 几何平均数: 代数平均数: 平方平均数:(2)均值不等式:,等号成立的条件均为: (3)三项均值不等式: 4、柯西不等式: 等号成立条件当且仅当或 (1)二元柯西不等式:,等号成立当且仅当 (2)柯西不等式的几个
2、常用变形 柯西不等式的三角公式: 式体现的是当各项系数不同时,其“平方和”与“项的和”之间的不等关系,刚好是均值不等式的一个补充。 5、排序不等式:设为两组实数,是的任一排列,则有:即“反序和乱序和顺序和”(二)不等式选讲的考察内容:1、利用不等式的变形与常见不等式证明不等式成立2、利用常见不等式(均值不等式,柯西不等式)求表达式的最值,要注意求最值的思路与利用基本不等式求最值的思路相似,即“寻找合适的模型将式子向定值放缩(消元)验证等号成立条件”3、解不等式(特别是含绝对值的不等式可参见“不等式的解法”一节)二、典型例题:例1:若不等式恒成立,则的取值范围为_思路:本题为恒成立问题,可知,所
3、以只需求出的最小值即可,一种思路可以构造函数,通过对绝对值里的符号进行分类讨论得到分段函数:,进而得到,另一种思路可以想到绝对值不等式:,进而直接得到最小值,所以,从而 答案: 例2:若存在实数使得成立,求实数的取值范围思路:本题可从方程有根出发,得到关于的不等式,从而解出的范围解:依题意可知二次方程有解 即当时, 当时,恒成立 当时, 综上所述,可得 例3:已知函数 (1)当时,解不等式 (2)若不等式对一切恒成立,求实数的取值范围(1)思路:所解不等式为,可通过分类讨论去掉绝对值进而解出不等式解:(1)当时, 当时, 当时, 综上所述:不等式的解集为 (2)思路:若不等式恒成立,可知只需即
4、可,含绝对值,从而可通过分类讨论将其变为分段函数,通过分析函数性质即可得到,所以 解:恒成立 考虑在单调递减,在单调递增 例4:已知都是正数,且,求的最大值思路一:已知为常数,从所求入手,发现被开方数的和为也为常数,所以想到均值不等式中“代数平均数平方平均数”,进而求得最大值解: 等号成立当且仅当 思路二:由所求可联想到柯西不等式(活用1):,从而可得:即,所以可知小炼有话说:本题分为两个思路只是想到的常用不等式不同(分别为均值不等式和柯西不等式),但实质上利用柯西不等式是可以证明“代数平均数平方平均数”。证明的过程如下: 例5:已知是实数,且,则的最大值是_思路:考虑将向进行靠拢,由柯西不等
5、式可知,对照条件可知令即可,所以,则答案: 小炼有话说:使用柯西不等式的关键在于构造符合条件的形式。首先要选择合适的柯西不等式形式,然后找到所求与已知之间的联系,确定系数在柯西不等式的位置即可求解。例6:已知实数满足,则的取值范围是_思路:本题的核心元素为,若要求的取值范围,则需要寻找两个等式中项的不等关系,即关于的不等关系,考虑到,联想到柯西不等式,则有,代入可得:解得:,验证等号成立条件:在时均有解。答案:例7:已知均为正数,求证:,并确定为何值时,等号成立思路:观察到不等式左边的项作和且存在倒数关系,右侧为常数,所以可想到基本不等式中互为倒数时,右侧为一个常数。,从而将左侧的项均转化为与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 讲义 不等式

限制150内