高中数学压轴题复习——导数中的参数问题(原卷版).doc
《高中数学压轴题复习——导数中的参数问题(原卷版).doc》由会员分享,可在线阅读,更多相关《高中数学压轴题复习——导数中的参数问题(原卷版).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【方法综述】导数中的参数问题主要指的是形如“已知不等式成立/存在性/方程的根/零点等条件,求解参数的取值或取值范围”.这类型题目在近几年的高考全国卷还是地方卷中,每一年或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型.学生要想解决这类型的题目,关键的突破口在于如何处理参数,本专题主要介绍分类讨论法和分离参数法.【解答策略】一分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的,如下面的第2种情形),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变
2、量和参数的分离.1形如或(其中符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1【河北省沧州市2019届高考模拟】直线与曲线有两个公共点,则实数的取值范围是_【指点迷津】由直线与曲线有两个公共点可得方程有两不等实根,即有两不等实根,令,求出函数的值域即可.【举一反三】【湖南省永州市2019届高三三模】若存在,使得成立,则实数的取值范围是( )ABCD2形如或(其中是关于一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该
3、类题目了. 例2【安徽省蚌埠市2019届高三下学期第二次教学质量检查】定义在上的函数满足,且,不等式有解,则正实数的取值范围是( )ABCD【指点迷津】不等式的恒成立问题,应优先考虑参变分离的方法,把恒成立问题转化为函数的最值(或最值的范围)问题来处理,有时新函数的最值点(极值点)不易求得,可采用设而不求的思想方法,利用最值点(极值点)满足的等式化简函数的最值可以求得相应的最值范围【举一反三】【山东省济宁市2019届高三第一次模拟】已知当时,关于的方程有唯一实数解,则所在的区间是( )A(3,4)B(4,5)C(5,6)D(67)二分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后
4、划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论.1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.例3【江苏省扬州中学2019届高三3月月考】已知函数有两个不同的极值点,若不等式 恒成立,则实数的取值范围是_【指点迷津】1.本题考查导数在研究函数中的应用,体现了导数的工具性,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 压轴 复习 导数 中的 参数 问题 原卷版
限制150内