无刷直流电动机的驱动与MATLAB仿真毕业设计精品资料.docx
《无刷直流电动机的驱动与MATLAB仿真毕业设计精品资料.docx》由会员分享,可在线阅读,更多相关《无刷直流电动机的驱动与MATLAB仿真毕业设计精品资料.docx(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、装订线安徽工业大学 毕业设计(论文)说明书 摘 要无刷直流电动机的最本质特征就是没有机械换向结构,取而代之的是逻辑电路和功率开关线路共同组成的电子换相器,它把直流电逆变成交流电并按一定的次序通入电动机的定子绕组中以产生与定子磁场正交的转子磁场。在使用中无刷直流电机相比有刷电机有许多的优点,比如:能获得更好的扭矩转速特;性高速动态响应;高效率;长寿命;低噪声;高转速。本文主要研究了无刷直流电机调速系统的基本方法,主要内容有无刷直流电机的基本原理,脉宽调速系统的原理和控制方法,在此基础上重点研究了无刷直流电机的换相控制,并对无刷直流电动机调速系统进行设计。最后利用MATLABSimulink面向电
2、气原理结构图的仿真技术,设计了一个转速单闭环无刷直流电机可逆脉宽调速系统,对其进行仿真,并根据仿真结果分析研究无刷直流电动机。关键词:调速,PWM控制,无刷直流电动机,仿真AbstractHaving no mechanical converter is Brushless DC motor essential feature.The structure is to replaced by a logic and power switching circuit composed of electronic commutator, which invert the direct current
3、into alternating current according to certain reverse the order of access motor stator windings in order to generate the rotor magnetic field orthogonal to the stator magnetic field. Compared to traditional DC motor, Brushless DC motor has many advantages, such as: access to better torque speed char
4、acteristics; of high-speed dynamic response; high efficiency; long life; low noise; high speed. This paper mainly studies the basic method of brushless DC motor speed control system, the main contents of this paper are including the basic principles of Brushless DC motor, PWM Speed Control System an
5、d the control method, and brushless DC motor speed control system design. Finally, MATLAB Simulink - Electric-principle-oriented for the simulation technology is used in design a single closed loop brushless DC motor speed reversible PWM speed control system, then simulate the system, and analyse th
6、e simulation results in order to research the feature of BLDCM.Key words: speed regulation, PWM control, BLDC motor, simulation目 录第一章 引言1.1无刷直流电机发展简介.41.2无刷直流电机调速系统的研究现状和未来发展.51.3 本设计的主要内容.5第二章 无刷直流电机原理 2.1 无刷直流电机的概述.72.2 电动机本体.82.2.1 定子92.2.2 转子92.2.3 有关电机本体设计的问题.102.3 转子位置检测.102.3.1 位置传感器法.112.3.2
7、 无位置传感器法.122.4 PWM技术142.5无刷直流电机电子换相器.162.6 无刷直流的基本方程.18第三章 无刷直流电动机调速系统的设计3.1 主电路供电方案.223.2主电路形式的选择.233.3基于MC33035的无刷直流电机控制系统.243.3.1MC33035无刷直流电机控制芯片.243.3.2基于MC33035的无刷直流电动机调速系统设计方案.26第四章 直流脉宽调速系统的MATLAB仿真4.1电源、逆变桥和无刷直流电机模型.274.2换相逻辑控制模块.294.3控制器和控制电平转换及PWM发生环节.344.3.1起动,阶跃负载仿真.364.3.2可逆调速仿真.39总结.4
8、1参考文献.42致谢.43第一章 引言1.1 无刷直流电机发展简介目前国内外对无刷直流电机的(Brushless DC Motor,BLDCM)的定义有两种:一种是认为只有梯形波/方波无刷直流电机才可被称为无刷直流带电机,而正弦波无刷直流电机则被称为永磁同步电机(Permanent Magnet Synchronous Motor,PMSM);另一种定义认为梯形波/方波无刷直流电机都是无刷直流电机。本论文采用第一种定义,仅认为反电动势波形为梯形波/方波的无刷直流电机称为无刷直流电机。电动机作为能量转换装置,应用于国民经济的各个领域。电动机一般分为交流电机和直流电机。相比较交流电动机,直流电动机
9、具有良好的起动性能和宽广平滑的调速特性,因而被广泛应用于电力机车、无轨电车、轧钢机、机床和起动设备等需要经常起动并调速的场合。但直流电动机的换向是依靠换向器和电刷进行换流,在频繁的运转过程中,由于换向器和电刷的摩擦,一方面消耗电刷,使我们不得不定期检查和更换电刷,耗时耗力;另一方面又产生电火花、电磁干扰,影响附近的电气设备。针对这种情况,早在上个世纪30年代就有人开始研究无刷直流电动机。1955年,美国D.Hazrison等人首次成功的实现了用晶体管换向线路代替有刷直流电动机机械电刷,这标志着现代无刷直流电机的诞生。在进入20世纪60年代以后,电力电子技术和计算机技术的应用使电机的发展经历了持
10、久的革命性的变化。作为机电一体化的产品,无刷直流电动机也得以发展,并开始进入初步的应用阶段。无刷直流电动机既具有普通直流电动机调速性能好的特点,又具有交流电动机结构简单、便于维护的特点,因此得到了一定范围内的初步应用。自20世纪70年代开始,稀土永磁材料的发展,使无刷直流电动机有了进一步的发展,但由于永磁材料的价格昂贵,研究开发重点只能在航空、航天领域用的电动机和要求高性能而价格不是主要因素的高科技领域。在进入80年代后较低价格的钦铁硼永磁材料的出现,使无刷直流电机能够进入普通民用的市场提供了可能,几十瓦到几百瓦无刷直流电动机开始在医疗器械、仪器仪表、化工、纺织以及家用电器等民用领域初显身手。
11、在90年代后,随着电力半导体器件的飞速发展,如GTR, GTO, MOSFET, IGBT的相继出现,另外微处理器、集成电路技术的发展,逆变装置也发生了根本性的变化,这些开关器件在向高频化、智能化、大容量化的方向发展,使无刷直流电动机的很重要的一传统直流电机具有运行效率高和调速性能好等诸多优点,被广泛地应用于对起动和调速有较高要求的拖动系统中,如电力牵引、轧钢机、起重设备等。在使用中无刷直流电机相比有刷电机有许多的优点,比如:能获得更好的扭矩转速特;性高速动态响应;高效率;长寿命;低噪声;高转速。另外, BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。由于这些
12、特性,无刷直流电机被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。1.2无刷直流电机调速系统的研究现状和未来发展目前国内外无刷直流电机的一般控制技术应经比较成熟,但日本和美国具有较先进的无刷直流电机制造与控制技术。特别是日本在民用方面较为突出,而美国则在军工方面更加先进。当前的研究热点主要集中在以下三个方面:研究无位置传感器控制技术以提高系统可靠性,并进一步缩小电机尺寸与重量;从电机设计和控制方法等方面出发,研究无刷直流电机转矩波动抑制从而提高其伺服 ,扩大应用范围;设计可靠小巧,通用性强的集成化无刷直流电机控制器。无位置传感器控制技术:传统的无刷直流电机
13、通过位置传感器来直接检测电机转子的位置。无位置传感器控制技术主要通过电机内易获取的电压或电流信号,经过一定的算法处理,得到转子位置信号,也称为转子位置简介检测法。目前检测方法主要有:反电势法;电感法;磁链法;续流二极管法;观测器估计法;智能估计法等。其中反电势法原理简单应用较为广泛。采用无位置传感器控制的无刷直流电机一般较难直接起动,因此其起动问题一直是研究的热点和难点。利用反电势法检测转子位置的无刷直流电机三段式起动方法已经比较成熟,该方法从电机起动到稳定运行可分为三个阶段:定子定位、加速和切换。其他无位置传感器控制下的电机起动方法,如预定位起动、升频升压同步起动法和短时检测脉冲转子定位法等
14、也都有了一定的应用。无刷直流电机控制器:无刷电机控制器的发展同电器元件类似,经历了从分立元件控制方法到数字可编程集成电路控制方法的发展历程。一般来讲,采用分立元件设计的控制器结构复杂、体积庞大、可靠性通用性差,不利于批量生产。一次,当前无刷直流电机主要采用专用集成电路控制器、FPGA、单片机、DSP控制器的方法。目前电机控制集成专用电路较多,对于无刷直流电机来说有Motorola公司的MC33035无刷直流电机控制芯片、MicroLinear公司的ML4425/4428无位置传感器控制芯片等等。如果考虑到控制器今后软硬件设计等功能,可以使用FPGA、单片机、DSP等对控制器设计。FPGA可以用
15、VHDL、Verilog或C语言来编程,灵活性强,具有静态可重复编程和动态在线系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改,并能按照用户需求来定义接口功能。单片机和DSP具有丰富的外围接口,单片机一般用于简单的电机控制系统,而DSP由于具有强大的计算能力和数据处理能力,通常应用于电机的智能控制系统中。关于转矩波动抑制的问题比较复杂,不在本文讨论的范围内,所以不多加叙述。1.3 设计主要内容本文共分为四章,主要针对无刷直流电机的控制方法以及仿真进行研究。第一章主要概述了无刷直流电机调速系统的研究背景与发展现状;第二章介绍了无刷直流电机的原理,简要介绍了脉宽调制原理和无刷直流电机控制
16、芯片MC33035;第三章对基于PWM控制技术的无刷直流电机调速系统进行了基本的硬件设计;第四章运用MATLABSimulink仿真设计了一个转速单闭环无刷直流电机可逆脉宽调速系统,对其进行仿真,并根据仿真结果分析研究的无刷直流电机的特点。最后对全文进行了总结。第二章 无刷直流电动机原理2.1 无刷直流电动机的概述无刷直流电动机机属于同步电动机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以无刷直流电机并不会产生普通感应电机的频差现象。无刷直流电机中又有单相、两相和三相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为广泛的三相无刷直流电机。
17、直流无刷电机的主要由电动机本体、位置传感器(对于位置传感器检测方法)与电子开关线路三部分组成,如图2-1所示 图2-1 无刷直流电动机工作原理 从图2.1可见,直流无刷电动机组件主要由电动机本体位置传感器和电子开关线路三部分构成。其定子绕组一般制成多相,转子由永磁材料制成。电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其它起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2, 4,)组成。定子绕组分别与电子开关线路中相应的功率开关器件联接。位置传感器的跟踪转子与电动机转轴相联接。 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁
18、场相互作用而产生转矩,驱动转子旋转。位置传感器则将转子磁钢位置信号变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。因此平常所说的直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、电动机本体及位置传感器三部分组成的电动机系统。直流无刷电动机的组成原理框图如图2.2图2-2直流无刷电动机转子的永久磁钢与永磁有刷电动机中所使用的永久磁钢的作用相似,均是在电动机的气隙中建立足够的磁场。不同之处在于直流无刷电动机中永久磁钢安装在转子上,而普通永磁直
19、流电动机是将磁钢安装在定子上。直流无刷电动机电子开关线路用来控制电动机定子上各相绕组通电的顺序和时间,主要由功率逻辑开关单元和位置传感器信号处理单元两部分组成。功率逻辑开关单元是控制电路的核心,它的功能是将电源的功率以一定逻辑关系分配给直流无刷电动机定子上各相绕组,以便使直流无刷电动机产生持续不断的转矩,而各相绕组导通顺序和时间主要取决于来自位置传感器的信号,但位置传感器产生的信号一般不能直接用来控制功率单元,常需要经过一定的逻辑处理后才能去控制功率单元。与有刷直流电动机区别的是:有刷直流电动机必须有一个滑动的接触机构-电刷和换向器,通过它们把电流反馈给旋转着的电枢。综上所述,构成直流无刷电动
20、机的主要部件框图如图2.3所示。图2-3下面做简要分述。2.2无刷直流电动机本体2.2.1 电动机定子无刷直流电机定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2-1b。从传统意义上讲,无刷直流电机的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的无刷直流电机定子有三个呈星行排列的绕组,每个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。跟传统有刷直流电机相比,无刷直流电机的绕组分布在定子侧,更有利于散热。电枢绕组可以Y接或接,如图2-4所示,但是考虑到系统的性能和成本较多应用Y接、三
21、相对称且无中性点引出的无刷直流电机。 图2-4 绕组形式无刷直流电机的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(EMF)不同,分别呈现梯形和正弦波形,故用此命名。梯形和正弦绕组产生的反电动势的波形图如图 2-5所示。本文中认为正弦绕组的无刷电机为永磁同步电机。 图2-5 a) 梯形绕组的反电势波形 图2-5 b)正弦绕组的反电势波形可想而知正弦绕组由于波形平滑所以运行起来相对梯形绕组来说就更平稳一些。但是,正弦型绕组由于有更多绕组使得其在铜线的使用上就相对梯形绕组要多,而且控制方法也比梯形波电动机大大复杂。所以在对电机运行精度要求不是非常
22、高的场合,梯形波电机也即无刷直流电机是非常合适的选择。2.2.2 电动机转子无刷直流电机的转子是由2至8对永磁体按照N极和S极交替排列在转子周围构成的(内转子型),如果是外转子型无刷直流电机那么永磁体就是贴在转子内壁上的。目前转子的永磁体多采用钕铁硼等高矫顽力、高剩磁感应密度的稀土永磁材料制作而成。无刷直流电机转子的永久磁钢跟有刷直流电机所用的磁钢相类似,均是在电机气隙中建立足够的磁场,只不过是采用了反装的形式。常见的转子结构有三种形式:(1)表面粘贴式磁极(又称瓦形磁极)。即在铁心外面粘贴径向充磁的瓦片形稀土永磁体。在电机设计过程中若采用瓦片形永磁体径向励磁并取其磁弧宽度大于120电角度,可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无刷直流电动机的驱动与MATLAB仿真毕业设计 精品资料 直流电动机 驱动 MATLAB 仿真 毕业设计 精品 资料
限制150内