基于Matlab语言的MonteCarlo入门教程精品资料.doc
《基于Matlab语言的MonteCarlo入门教程精品资料.doc》由会员分享,可在线阅读,更多相关《基于Matlab语言的MonteCarlo入门教程精品资料.doc(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、前言与说明一、Monte Carlo方法是一门简单而复杂的学问Monte Carlo方法往小的方面说很简单,就是生成一堆随机数,然后以某函数规则计算出一堆数值,最后求这些数值的平均值就得到了结果;往大的方面说却很复杂,要将蒙特卡洛做好需要考虑的问题很多,例如:1. 需要解决的问题是否收敛倘若不收敛,Monte Carlo方法就不能用,不然计算出来的结果有何意义,只有老天才知道;2. 所选用的具体方法收敛速度如何虽然几乎所有Monte Carlo收敛阶数为1/2,但不同的方法收敛阶数前面的系数不同;3. 所得解的误差是多少Monte Carlo方法从来得不到精确值,而是一个近似的随机变量,因此,
2、任何时候,报告Monte Carlo解时,需要同时报告该解的方差;4. 如何选择具体算法,以加快速度Monte Carlo模拟需要较长时间,所以速度很重要。尤其是你使用Monte Carlo方法实时计算金融产品价格时,时间就是金钱。加快Monte Carlo速度有很多或大或小的技巧,而且这些技巧还要依据不同问题而定。5. 伪随机数问题计算机生成的随机数都是伪随机数,很多Monte Carlo书中都大书特书伪随机数的危害以及如何生成尽可能“真”的伪随机数。有此告诫在,我们自然不能对伪随机数问题视而不见,但是我们是否就要因这一问题惶惶不可终日呢?6. 模型与现实模型是我们的理想,但是现实中的市场却
3、是残酷的。如果有人仅仅拿着书本就冲进市场,那他必然还要交高昂的学费,最终鲜血淋漓地出来。同理,Monte Carlo方法(以及其他几乎所有方法),任何时候都只能给我们作参考。然而,我们却可以以科学的态度和方法使用Monte Carlo方法,以使其结果更加贴近现实,参考价值更大。二、本课程将解决的问题作为一门针对非学术人士的入门性质的课程,本课程最注重的是基础的应用性知识。在接下来,我会详细讲述Monte Carlo方法本身,且为了确保大家看懂,我会精选一些例子,从这些例子的数学推导,到算法描述,到程序设计,到误差分析,这些基础过程都将涉及。尤其考虑到我见过的不少人(尤其是论坛上的不少网友),编
4、程基础比较薄弱,所以在讲解程序时我会逐句分析,至少确保你能看懂这个程序的每个步骤。另一方面,入门课程还肩负为大家未来学习奠定基础的重要使命,故课程中要覆盖各个方面的内容,例如上一节所提到的都或多或少有所覆盖。但是,正是因为这是一个入门性质的课程,很多的内容无法涉及,同时很多有所涉及的内容也无法充分展开。具体在下文中涉及到相关内容时我会尽量提供进一步学习的方向、方法等延伸性问题。这里值得一提的是上文所提及的模型与现实的问题。本课程中的例子基本都是理论化的例子,这样的例子好处在于它简化了很多复杂的现实状况,对于初学者而言容易上手,也便于教授Monte Carlo方法如何使用,同时它还是解决现实问题
5、的基础。所以,要特别注意,我在课程中讲的那些金融工具定价的例子都是理论化的例子,千万不要以为学会那些之后就已经学会了现实中的金融产品的定价,套用一句广告词:“才刚刚开始呢”。三、章节设置常见的Monte Carlo书籍包含如下内容:随机数的生成、特定分布抽样、优化(降低方差)技巧、随机过程模拟、Monte Carlo方法实际应用、以及扩展(主要是Quasi-Monte Carlo,即拟蒙特卡洛方法)本教程覆盖随机数生成、特定抽样分布、随机过程模拟和应用实例。但和那些书籍不同在于如下这些方面:不详细讲伪随机数问题我们用Matlab内附带的随机数生成器,将伪随机数问题留给Mathworks的专家吧
6、不讲降低方差技巧降低方差技术讲的是怎样更快地作Monte Carlo,而这是入门教程,目的在教会你怎样做Monte Carlo,如果你还不会做就去学怎样可以做得更快那没有意义。所以,先学会基本使用方法最重要,优化的问题在熟练后再讲述就水到渠成了。特定分布抽样会讲很多有用的技巧,例如Reject Method、条件分布方法、协方差阵、Copula等方法生成联合分布随机变量,但是如果讲述太深,每个内容都可以写一本书了,所以不会讲太深,只讲用的最多的那很少一部分内容。并行Monte Carlo很多入门的书上不会讲这个,但是这个课程里面会专门用一章讲,更详细介绍见本章倒数第三小节。四、课程的教授模式本
7、课程中每个知识点基本按照如下步骤展开:(一)理论基础主要介绍与知识点息息相关的基础知识,例如公式的数学推导、概念的含义、Matlab语句基础、计算机相关知识等等。这样做最大的作用是帮助大家回忆这些内容,以便与主体内容展开相衔接。由于这并非主旨所在,所以不会在其上花费过多笔墨。若你从未接触过这些基础知识,你要是看一遍课程中的简介就懂了自然最好,若不懂,则建议翻阅相应的参考书籍。我会在课程讲义最后附上我写作本课程讲义所用到的所有参考书目。(由于我习惯看英文原版书,所以此教程的参考书目大多数是英文书籍)(二)主体内容不必多言,就是知识点的展开。(三)相关例子每个知识点后面我会附上一些与其有关的简单的
8、例子。(四)注意事项任何知识、方法都有它自身的局限,所以仅仅知道方法怎么做还不够,还需要明白这些方法何时何地能用。从另一个角度来看,本课程主要包含如下资料:(一)讲义就是你当前看到的这份资料。此资料覆盖所有便于书写的内容。而且,购买了视频教程的网友将收到PDF版本的讲义;同时这份讲义还会以HTML网页的形式挂在我的个人主页(由于我的个人主页是商业空间,需要大量的流量才能产生足以支持空间运营的广告收入,所以请购买了视频教程的网友不要在未经我个人允许前提下将PDF讲义等资料公布在网络上,对此我保留追究法律责任的权力。特别需要指出一点:由于时间紧迫,写作讲义时文字不经细细斟酌,虽然意思基本表达清楚,
9、但中文语法错误在所难免。今后有时间会逐句修改,也欢迎大家帮忙校订,具体做法是:保存当前网页为html,用word打开网页,另存为doc,之后再修订文档。(二)PPTPPT主要覆盖一些公式性推导和一些我并不拥有完全版权的内容有些比较独特的知识、例子来自于我在北京大学的金融工程等课程,将其以电子版发布在网络上会冒犯到为这些知识、例子付出很多心血的老师故PPT不会分发(无论是否购买视频教程),但是会显示在视频中。观众通过暂停视频的方式阅读这些内容。(三)代码Monte Carlo的代码不是很复杂,但要写出高质量的代码却不容易,所以对于大多数例子我会写至少两个版本代码,一个是基础版本,采用大家最熟悉的
10、最基础的Matlab语句来写;另一个是优化后的版本,这一版本将充分考虑Matlab特点进行优化,但是它可能不那么容易读懂。对于购买了视频的网友,我会将PDF和代码文件放在一个压缩包中发送至你的邮箱,只要将此附件解压缩即可得到代码文件。(四)视频教程视频教程文件太大,我不可能找到足够的免费空间来存放这些视频文件,免费提供给大家观看。故视频教程将借助其他网站的空间。在我当前与人大经济论坛的合同结束前,此视频教程由人大经济论坛独家提供。具体的网址见:http:/baoming.pinggu.org/Default.aspx?id=11五、基础知识要求虽然我会在每章开始部分很简略地复习部分基础概念,但
11、是要顺利完成此课程,请确保自己牢固掌握了如下知识。(一)数学基础学习Monte Carlo必备基础的概率论知识。随机变量、PDF(随机变量的概率分布)、CDF(随机变量的累积分布)、联合分布、条件分布、边缘分布、COPULA、随机微分方程(SDE)等等。而且不仅仅是知道这些概念是什么含义,还要会用、会算。不过也不用被这些吓到,虽然我在相关章节讲的内容比较深,这些知识都全要用到,但是里面最重要的知识只有一个,那就是正态分布。你只要会熟练学习正态分布,就可以解决不少金融产品理论定价的问题。话说回来,必须指出,本教程里面涉及的数学相对于真正难的知识还只是入门,要做现实市场中的产品定价这些知识远远不够
12、。补充说明,大多数理论定价模型,例如Black Scholes模型,Black模型,为了推导简便起见(当前也限于这些论文写作时的计算机技术等外界因素),都只考虑正态分布;但是,在真实市场中,很多经济变量(例如股票收益率),可能符合白噪声假设,但是一般不符合正态分布假设及独立假设。总之,只掌握正态分布,理论模型基本不会有问题,却不足以做真实市场的分析。(二)Matlab基础本教程的某章中,我会简略讲讲编程入门知识。但是Matlab的基本操作需要你自己去看。要求掌握程度可以参考我写得Matlab简明教程(三)金融工程知识虽然这个教程没有明确表明专门讲金融产品定价,但是这里用了不少金融产品理论定价的
13、例子来解说Monte Carlo方法,如果你对金融工程比较熟悉,那么看这些部分相对会更顺利。即使不熟悉也没关系,每个例子的开始部分,我会简要解释相关背景知识。(四)计算机基本知识由于需要讲述Matlab实际操作,所以你应该熟悉Matlab软件启动退出,磁盘目录概念;另外会讲述并行Monte Carlo计算,所以你应该明白双核概念,内存CPU等等基本知识总要懂一点的。其他的不要求。六、Monte Carlo并行计算这里还特别提一下并行计算。现在双核机器基本普及,还有不少网友的机器是三核甚至四核,如果能够同时使用多个核心做计算,运算速度可以有显著提升。幸运的是, 方法的特点使得它特别适合并行计算。
14、所以,在这个教程中,我将用独立的一章特别讲述如何使用Matlab并行计算工具箱(Parallel Computing Toolbox)做Monte Carlo模拟。我会先介绍并行计算的基础知识(例如两种主要的并行模式),以及会更详细介绍Matlab并行计算工具箱的工作原理Matlab的并行计算并非标准的并行计算,必须了解其特点才能发挥并行计算优势,否则速度可能更慢。介绍完基础知识,我将通过将此前各章的Monte Carlo例子改写为并行计算代码这种形式来讲述Monte Carlo并行算法。之后,还将特别列出用Matlab做并行Monte Carlo的一些注意事项,并给出一些用以确保效率的简要规
15、则。七、关于回答疑问不论是否购买了视频教程都可以通过邮件形式联系我,我的Email地址在主()页上及视频教程中已标明。我很乐意就本课程相关的任何问题与大家交流。不过有几点还请大家理解:1. 由于我邮箱中垃圾邮件很多,所以你写信时的书写方式和内容尽量确保不要被Gmail当成垃圾邮件处理掉2. 我事情比较忙,所以可能不能及时回信,还请见谅。3. 有疑问可以通过邮件联系我,也可以直接在论坛上相关板块发帖咨询。(我收邮件频率一般高于上论坛频率)4. 在询问我之前强烈建议你在讲义、我主页的FAQ栏目中查询是否已有类似问题。5. 提问一定要详细具体,并附上详尽的背景材料,那些飘渺无踪影的问题实在令人无从下
16、手!6. 我回答问题的方式可能是直接给出代码等解答,也可能是告知你从何处寻找相关信息以自己解决即授人以鱼和授人以渔这两种方式我都有可能选择。7. 如果所提问题有很好的代表性,我将略去或更换你提问中涉及你个人情况的信息、数据,然后将此问题的解答方法放置在课程主页上,以便其它网友参考。8. 我保证会很认真对待每位网友每个有意义的问题并会尽力去寻找答案,但我无法保证每个问题我都能回答。八、关于后续课程这个课程只讲基础。主要作用有两个,一个是为更深课程提供一个入门途径,这样将来我要是讲更深课程时就不必浪费时间讲基础知识了;另一个是投石问路,我的时间一直很紧张,此课程也是第一次和人大经济论坛合作,因此我
17、需要看看市场反应再决定是否有必要花费大量时间准备延伸课程。如果结果显示有足够数量的网友对这方面的知识很感兴趣(这个主要体现在视频购买上哈哈),那么我可能考虑推出关于金融产品Monte Carlo定价的课程。在那个课程中,理论模型不再是主要内容,我会从现实出发,从如何分析市场历史数据以得到重要参数,到如何建立各种模型,再到现实中各项应用等等。九、版权申明未经本作者书面授权许可,本课程任何资料不得用于商业或盈利性用途。讲义的PDF版本仅仅提供给购买了视频教程的最终用户,此讲义可以复印,也可打印后分发,但未经作者本人书面许可,任何人不得散发讲义PDF电子版。网页版本的讲义可下载,且在保证网页文件未被
18、认为修改情况下可以公开传播,但考虑到我会时常更新网页版本内容,强烈建议直接访问课程网站。除上述两种情况外,任何材料不得在未经作者本人书面授权许可情况下散发。第一章:Monte Carlo方法概述讲课人:Xaero Chang | 课程主页: 本章主要概述Monte Carlo的一些基础知识,另外包括一个最简单的用Monte Carlo方法计算数值积分的例子。一、Monte Carlo历史渊源Monte Carlo方法的实质是通过大量随机试验,利用概率论解决问题的一种数值方法,基本思想是基于概率和体积间的相似性。它和Simulation有细微区别。单独的Simulation只是模拟一些随机的运动
19、,其结果是不确定的;Monte Carlo在计算的中间过程中出现的数是随机的,但是它要解决的问题的结果却是确定的。历史上有记载的Monte Carlo试验始于十八世纪末期(约1777年),当时布丰(Buffon)为了计算圆周率,设计了一个“投针试验”。(后文会给出一个更加简单的计算圆周率的例子)。虽然方法已经存在了200多年,此方法命名为Monte Carlo则是在二十世纪四十年,美国原子弹计划的一个子项目需要使用Monte Carlo方法模拟中子对某种特殊材料的穿透作用。出于保密缘故,每个项目都要一个代号,传闻命名代号时,项目负责人之一von Neumann灵犀一点选择摩洛哥著名赌城蒙特卡洛
20、作为该项目名称,自此这种方法也就被命名为Monte Carlo方法广为流传。十一、Monte Carlo方法适用用途(一)数值积分计算一个定积分,如,如果我们能够得到f(x)的原函数F(x),那么直接由表达式: F(x1)-F(x0)可以得到该定积分的值。但是,很多情况下,由于f(x)太复杂,我们无法计算得到原函数F(x)的显示解,这时我们就只能用数值积分的办法。如下是一个简单的数值积分的例子。数值积分简单示例如图,数值积分的基本原理是在自变量x的区间上取多个离散的点,用单个点的值来代替该小段上函数f(x)值。常规的数值积分方法是在分段之后,将所有的柱子(粉红色方块)的面积全部加起来,用这个面
21、积来近似函数f(x)(蓝色曲线)与x轴围成的面积。这样做当然是不精确的,但是随着分段数量增加,误差将减小,近似面积将逐渐逼近真实的面积。Monte Carlo数值积分方法和上述类似。差别在于,Monte Carlo方法中,我们不需要将所有方柱的面积相加,而只需要随机地抽取一些函数值,将他们的面积累加后计算平均值就够了。通过相关数学知识可以证明,随着抽取点增加,近似面积也将逼近真实面积。在金融产品定价中,我们接触到的大多数求基于某个随机变量的函数的期望值。考虑一个欧式期权,假定我们已经知道在期权行权日的股票服从某种分布(理论模型中一般是正态分布),那么用期权收益在这种分布上做积分求期望即可。(五
22、)随机最优化Monte Carlo在随机最优化中的应用包括:模拟退火(Simulated Annealing)、进化策略(Evolution strategy)等等。一个最简单的例子是,已知某函数,我们要求此函数的最大值,那么我们可以不断地在该函数定义域上随机取点,然后用得到的最大的点作为此函数的最大值。这个例子实质也是随机数值积分,它等价于求此函数的无穷阶范数(-Norm)在定义域上的积分。由于在金融产品定价中,这部分内容用的相对较不常见,所以此课程就不介绍随机最优化方法了。十二、Monte Carlo形式与一般步骤(一)积分形式做Monte Carlo时,求解积分的一般形式是:X为自变量,
23、它应该是随机的,定义域为(x0, x1),f(x)为被积函数,(x)是x的概率密度。在计算欧式期权例子中,x为期权到期日股票价格,由于我们计算期权价格的时候该期权还没有到期,所以此时x是不确定的(是一随机变量),我们按照相应的理论,假设x的概率密度为(x)、最高可能股价为x1(可以是正无穷)、最低可能股价为x0(可以是0),另外,期权收益是到期日股票价格x和期权行权价格的函数,我们用f(x)来表示期权收益。(二)一般步骤我将Monte Carlo分为三加一个步骤:1依据概率分布(x)不断生成随机数x, 并计算f(x)由于随机数性质,每次生成的x的值都是不确定的,为区分起见,我们可以给生成的x赋
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于Matlab语言的MonteCarlo入门教程 精品资料 基于 Matlab 语言 MonteCarlo 入门教程 精品 资料
限制150内