广东省汕头市2024届高三第一次模拟考试数学试题含答案.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《广东省汕头市2024届高三第一次模拟考试数学试题含答案.docx》由会员分享,可在线阅读,更多相关《广东省汕头市2024届高三第一次模拟考试数学试题含答案.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2024年汕头市普通高考第一次模拟考试数学注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号姓名和科目.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区城内.4.考试结束后,请将本试题卷和答题卡一并上交.一选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1. “”是“”的( )A. 充分不必要条件B. 必要不充分条件C.
2、 充要条件D. 既不充分也不必要条件2. 在3与15之间插入3个数,使这5个数成等差数列,则插入的3个数之和为( )A. 21B. 24C. 27D. 303. 的内角,的对边分别为,若,则结合的值,下列解三角形有两解的为( )A. B. C. D. 4. 展开式中项的系数为( )A B. C. D. 5. 已知函数是奇函数,则的最小值为( )A. 3B. 5C. D. 6. 在复数范围内,下列命题是真命题的为( )A. 若,则是纯虚数B. 若,则是纯虚数C. 若,则且D. 若、为虚数,则7. 已知圆锥的顶点为,为底面圆心,母线与互相垂直,的面积为,与圆锥底面所成的角为,则( )A. 圆锥的高
3、为B. 圆锥的体积为C. 圆锥侧面展开图的圆心角为D. 二面角的大小为8. 如图,设、分别是椭圆的左、右焦点,点是以为直径的圆与椭圆在第一象限内的一个交点,延长与椭圆交于点,若,则直线的斜率为( )A. B. C. D. 二多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了名学生的成绩,整理得到如图所示的频率分布直方图.为进一步分析高分学生的成绩分布情况,计算得到这名学生中,成绩位于内的学生成绩方差为,成绩位于内的同学成绩方差为.则( )
4、参考公式:样本划分为层,各层的容量平均数和方差分别为:、;、.记样本平均数为,样本方差为,.A. B. 估计该年级学生成绩的中位数约为C. 估计该年级成绩在分及以上的学生成绩的平均数为D. 估计该年级成绩在分及以上的学生成绩的方差为10. 已知函数,则( )A. 曲线对称轴为B. 在区间上单调递增C. 的最大值为D. 在区间上的所有零点之和为11. 如图,是连接河岸与的一座古桥,因保护古迹与发展的需要,现规划建一座新桥,同时设立一个圆形保护区.规划要求:新桥与河岸垂直;保护区的边界为一个圆,该圆与相切,且圆心在线段上;古桥两端和到该圆上任意一点的距离均不少于.经测量,点分别位于点正北方向正东方
5、向处,.根据图中所给平面直角坐标系,下列结论中,正确的是( )A. 新桥的长为B. 圆心可以在点处C. 圆心到点的距离至多为D. 当长为时,圆形保护区的面积最大三填空题:本题共3小题,每小题5分,共15分.第1314题第一空2分,第二空3分.12. 在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线上,则这组样本数据的样本相关系数为_.13. 已知外接圆的半径为1,圆心为点,且满足,则_,_.14. 如图,在正方体中,是棱中点,记平面与平面的交线为,平面与平面的交线为,若直线分别与所成的角
6、为,则_,_.四解答题:本题共5小题,共77分.解答应写出文字说明证明过程或演算步骤.15. 已知数列和,其中,数列的前项和为(1)若,求;(2)若是各项为正的等比数列,求数列和的通项公式16. 已知函数.(1)当时,求曲线在点处切线方程;(2)若既存在极大值,又存在极小值,求实数的取值范围.17. 如图,三棱台中,侧面四边形为等腰梯形,底面三角形为正三角形,且.设为棱上的点.(1)若为的中点,求证:;(2)若三棱台的体积为,且侧面底面,试探究是否存在点,使直线与平面所成角的正弦值为?若存在,确定点的位置;若不存在,说明理由.18. 已知点为双曲线上的动点.(1)判断直线与双曲线的公共点个数,
7、并说明理由;(2)(i)如果把(1)的结论推广到一般双曲线,你能得到什么相应的结论?请写出你的结论,不必证明;(ii)将双曲线的两条渐近线称为“退化的双曲线”,其方程为,请利用该方程证明如下命题:若为双曲线上一点,直线:与的两条渐近线分别交于点,则为线段的中点.19. 2023年11月,我国教育部发布了中小学实验教学基本目录,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面
8、是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到颗番石榴(不妨设颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前颗番石榴,自第颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设,记该学生摘到那颗最大番石榴的概率为.(1)若,求;(2)当趋向于无穷大时,从理论的角度,求的最大值及取最大值时的值.(取)2024年汕头市普通高考第一次模拟考试数学注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔
9、将自己的姓名准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号姓名和科目.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区城内.4.考试结束后,请将本试题卷和答题卡一并上交.第I卷选择题一选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1. “”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据充分条件、必要条件求解即可.【详解】
10、因为,而推不出,例如满足,但不成立,所以“”是“”的充分不必要条件,故选:A2. 在3与15之间插入3个数,使这5个数成等差数列,则插入的3个数之和为( )A. 21B. 24C. 27D. 30【答案】C【解析】【分析】根据给定条件,利用等差数列性质求解即得.【详解】令插入的3个数依次为,即成等差数列,因此,解得,所以插入的3个数之和为.故选:C3. 的内角,的对边分别为,若,则结合的值,下列解三角形有两解的为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,由正弦定理代入计算,即可得到结果.【详解】由正弦定理可得,所以,因为三角形有两解,所以,且,因此由选项知,只有符合.故
11、选:B4. 展开式中项的系数为( )A. B. C. D. 【答案】A【解析】【分析】写出展开式通项,令的指数为,求出参数的值,代入通项后即可得解.【详解】的展开式通项为,因为,在中,令,可得项的系数为;在中,令,得,可得项的系数为.所以,展开式中项的系数为.故选:A.5. 已知函数是奇函数,则的最小值为( )A. 3B. 5C. D. 【答案】C【解析】【分析】根据函数的奇偶性可得,利用基本不等式求最值即可.【详解】令,得,故函数的定义域为因为是奇函数,则其定义域关于原点对称,可得,即,此时,可得,可得是奇函数,即符合题意;故,当且仅当,即,时等号成立,故的最小值为,故选:C6. 在复数范围
12、内,下列命题是真命题的为( )A. 若,则是纯虚数B. 若,则是纯虚数C. 若,则且D. 若、为虚数,则【答案】D【解析】【分析】利用特殊值法可判断ABC选项;利用共轭复数的定义结合复数的乘法、复数的概念可判断D选项.【详解】对于A选项,取,则,所以,此时,不是纯虚数,A错;对于B选项,取,则成立,但不是纯虚数,B错;对于C选项,取,则,但且,C错;对于D选项,若、为虚数,设,则,所以,D对.故选:D.7. 已知圆锥的顶点为,为底面圆心,母线与互相垂直,的面积为,与圆锥底面所成的角为,则( )A. 圆锥的高为B. 圆锥的体积为C. 圆锥侧面展开图的圆心角为D. 二面角的大小为【答案】D【解析】
13、【分析】利用三角形的面积公式求出圆锥的母线长,结合线面角的定义可判断A选项;利用圆锥的体积公式可判断B选项;利用扇形的弧长公式可判断C选项;利用二面角的定义可判断D选项.【详解】对于A选项,因为与底面垂直,为底面圆的一条半径,则,所以,与圆锥底面所成的角为, 又因为,所以,的面积为,解得,所以,该圆锥的高为,A错;对于B选项,该圆锥的底面半径为,故该圆锥的体积为,B错;对于C选项,设该圆锥侧面展开图的圆心角为,底面圆周长为,则,C错;对于D选项,取的中点,连接、, 因为,为的中点,则,由垂径定理可得,所以,二面角的平面角为,因为平面,平面,则,因为,则为等腰直角三角形,则,所以,所以,因为,故
14、,所以,二面角的大小为,D对.故选:D.8. 如图,设、分别是椭圆左、右焦点,点是以为直径的圆与椭圆在第一象限内的一个交点,延长与椭圆交于点,若,则直线的斜率为( )A. B. C. D. 【答案】C【解析】【分析】由点为圆与椭圆的焦点,可得,结合条件,应用勾股定理即可得.【详解】连接、, 由在以为直径的圆上,故,、在椭圆上,故有,设,则,则有,即可得,解得,故,则,故.故选:C.二多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了名学生
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 汕头市 2024 届高三 第一次 模拟考试 数学试题 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内