全国第八届青年数学教师优质课展示课件与教学设计函数的单调性教学设计(蔡静雯).docx
《全国第八届青年数学教师优质课展示课件与教学设计函数的单调性教学设计(蔡静雯).docx》由会员分享,可在线阅读,更多相关《全国第八届青年数学教师优质课展示课件与教学设计函数的单调性教学设计(蔡静雯).docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3.1函数的单调性与最大(小)值(第一课时)教学设计桂林十八中数学组 蔡静雯一、 教学内容解析:(1)教学内容的内涵、数学思想方法、核心与教学重点;本课教学内容出自人教版普通高中课程标准实验教科书必修数学1(以下简称“新教材”)第一章3.1节。函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质如增函数表现为“随着x增大,y也增大”这一特征与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质函
2、数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部)可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)
3、”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1x2时,有f(x1)f(x2)(或f(x1)f(x2)),则称函数f(x)在区间D上是增函数(或减函数)(2)教学内容的知识类型;在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题-提出问题-解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识.(3)教学内容的上位知识与下位知识;在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的
4、上位知识.图象法、作差法是判断证明函数单调性的下位知识.(4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= 0.001x+1和函数,能引发提出问题-分析问题-解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观.二、教学目标设置: 本课教学以普通高中数学课程标准(实验)(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。“课标”数学1模块内容要求是:
5、不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。“课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时)为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下:(1)知识与技能:理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念;能利用图象法直观判断函数的单调性;初步掌握利用函数单调性定义从正反两个角度分析、判断、证明函数单调性.理解函数单调性定义蕴含的不等关系,初步掌握利用作差比较推理证明函数单调性的方法.(2)过程与方法:经历观察发现、
6、归纳类比、抽象概括、符号表示、推理论证等思维过程,提高相应的数学思维能力;探索函数单调性的符号语言表述,体会数形结合、分类讨论、特殊与一般、无限与有限、等价转化等数学思想. (3)情感、态度与价值观:通过观察生活常见数据例子,感受数学的科学价值与应用价值,提高学习数学的兴趣。通过自主学习、小组合作探究,形成独立思考、讨论争辩、合作整理的良好学习模式与氛围.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明的认知过程,形成对后续函数性质的一般研究方法,形成批判性的思维习惯,崇尚数学的理性精神,树立辩证唯物主义世界
7、观.三、学生学情分析:(1)学生已有基础:认知基础:从学生知识最近发展区来看。他们在初中已经接触过函数的单调性,不过那时没有提函数的单调性,而是用体现变量之间依赖关系的文字语言“y随x的增大而增大,y随x的增大而减小”来描述,符合学生的认知规律,同时一次函数、二次函数的图象直观地体现了函数的这一性质.能理解不等关系,理解ab可以等价转化为ab0, ab可以等价转化为ab0.非认知基础:通过小学、初中和高中阶段集合与函数概念的学习,学生具有一定的抽象概括、类比归纳、符号表示的能力.具备相当的日常生活经验,能看懂曲线图.(2)教学难点及难点突破: 难点1:能用不等关系对“随着”、“增大”、“减小”
8、这种文字语言进行符号化.这个差距是从自然描述抽象概括为符号表述. 抽象能力稍强的学生可以通过同时对比函数的列表和图象,用数形结合思想,自主消除差距.如果学生抽象能力稍弱,教师可以提示“增大、减小都是体现大小比较的词汇”,启发学生用比较大小的方法抽象概括.并用“当时,有”来体现“随着”这种变量间的伴随关系.难点2:能理解“任意都”这个句式的具体含义:第一,不能取特定值来判别函数的单调性;这里的差异是学生要理解可以用特殊推广到一般,但不能用特殊代替一般,学生也许理解不透彻,需要教师提起注意,本课设置了辨析题1解决这个问题;第二,正是由于取值的任意性,造就了函数的单调性的局部性。这里的差异是学生要理
9、解如果不在同一个单调区间内取值验证,会出现不能界定单调性的矛盾.学生第一次接触这样高度概括的符号语言,这个差距多数需要教师设置有效教学环节帮助消除,本课设置了辨析题2,并采用小组合作探究的学习模式,让学生独立思考、充分讨论、正误对比来获得正确认识.第三、用“任意”的必要性,体现化无限为有限的思想.这里的差距是学生要理解“任意”这个说法的必要性,由于是高度概括的文字语言,理解起来需要演绎推理的过程,这个差距是需要教师帮助消除的,本课通过下列问题串来解决:“师问:x1和x2是一对具有代表性的符号,它们究竟代表了多少对数值?生答:无数对 师问:无数对还是所有对?生答:所有对 师问:无数能代替所有吗?
10、生答:不能 师问:什么可以代替?生答:可以用“任意”来代替 ”.四、教学策略分析:(1)教学材料分析;学生在初中已经接触过函数的单调性,不过那时没有提函数的单调性,而是用体现变量之间依赖关系的文字语言描述,符合学生的认知规律,同时一次函数、二次函数的图象直观地体现了函数的这一性质.可以选择他们熟悉的一次函数、二次函数函数通过有效组织成为教学材料,在不经意中展示函数f(x)= 0.001x+1引发不能靠图象直观判断,要靠解析式代值验证;再展示函数说明靠解析式代值验证操作性很差,需要发展新知识-利用解析式快速判断单调性,这两个教学材料贴近学生实际出发,能有效引发思考,十分自然地推动了知识发展;再以
11、二次函数f(x)= x2承担主要探究材料,组织列表和图象对比材料,驱动学生由“形”转“数”,提炼符号语言描述;组织两道辨析题,问题驱动深挖定义的内涵;组织直观判断单调性的例1以及需要用定义判断证明的例2及练习,肯定了利用函数解析式探求函数单调性的方法.(2)教学方法分析;本课教学内容重点是函数单调性符号语言描述的抽象概括过程,是学生遇到的抽象程度极高的符号语言,所以结合幻灯片、实物投影等多媒体技术的教学手段,选择观察发现式、问题启发式、合作讨论式的教学方法.(3)设计“问题串”的分析:依据的学生认知规律,从问题1至问题5以及两个思考,“问题串”的设计体现了从直观到抽象,由特殊到一般,从感性到理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 第八 青年 数学教师 优质课 展示 课件 教学 设计 函数 调性 蔡静雯
限制150内