创新设计二轮理科数学 教师WORD文档微专题45 不等式选讲.doc
《创新设计二轮理科数学 教师WORD文档微专题45 不等式选讲.doc》由会员分享,可在线阅读,更多相关《创新设计二轮理科数学 教师WORD文档微专题45 不等式选讲.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、微专题45不等式选讲高考定位本部分主要考查绝对值不等式的解法,含绝对值函数的最值,以及绝对值不等式恒成立问题,不等式的证明等,难度中等.1.(2021全国乙卷)已知函数f(x)|xa|x3|.(1)当a1时,求不等式f(x)6的解集;(2)若f(x)a,求a的取值范围.解(1)当a1时,f(x)|x1|x3|,故f(x)6即|x1|x3|6,当x3时,原不等式可化为1xx36,解得x4;当31时,原不等式可化为x1x36,解得x2.综上,当a1时,原不等式的解集为x|x4或x2.(2)f(x)|xa|x3|(xa)(x3)|3a|,当且仅当x的值在a与3之间(包括两个端点)时取等号,若f(x)
2、a,则只需|3a|a,当aa,无解,a3时,a3a,得a.故a的取值范围为.2.(2022全国甲卷)已知a,b,c均为正数,且a2b24c23,证明:(1)ab2c3;(2)若b2c,则3.证明(1)法一(平方转化基本不等式证明)因为a2b24c23,所以(ab2c)2a2b24c22(ab2bc2ac)3(a2b2)b2(2c)2a2(2c)232a2b2(2c)29,当且仅当ab2c1时取等号.又a,b,c均为正数,所以ab2c3.法二(柯西不等式证明)因为a2b24c23,所以根据柯西不等式有33(a2b24c2)(121212)(ab2c)2,当且仅当ab2c1时取等号.又a,b,c均
3、为正数,所以ab2c3.(2)因为b2c,所以根据(1)有a4c3,所以()()(14)(52)3,当且仅当ab2c1时取得等号.热点一含绝对值不等式的解法(1)|f(x)|a(a0)f(x)a或f(x)a.(2)|f(x)|0)af(x)a.(3)对形如|xa|xb|c,|xa|xb|c的不等式,可利用绝对值不等式的几何意义求解. 例1 已知函数f(x)|xa|x3|. (1)当a1时,求不等式f(x)x9的解集;(2)若f(x)|x4|的解集中包含0,1,求a的取值范围.解(1)当a1时,f(x)当x3时,由2x2x9,得x;当3x1,由4x9,不等式无解;当x1,由2x2x9,得x7,所
4、以不等式f(x)x9的解集是7,).(2)f(x)|x4|等价于|xa|x4|x3|7,即7ax7a.根据题意得解得7a6,所以a的取值范围是7,6.规律方法含绝对值不等式的解法有:(1)零点分段法;(2)图象法;(3)绝对值不等式的几何意义.训练1 (2022兰州诊断)已知函数f(x)3|2x1|2xa|.(1)当a2时,解不等式f(x)0; (2)若f(x)0,求实数a的取值范围.解(1)当a2时,不等式f(x)0,即|2x1|2x2|3,当x时,原不等式化为(2x1)(2x2)3,解得x;当x1时,原不等式化为(2x1)(2x2)3,解得xa恒成立f(x)mina,f(x)a恒成立f(x
5、)maxa有解f(x)maxa,f(x)a有解f(x)mina.训练2 已知a0,b0,4ab2ab.(1)求ab的最小值;(2)若ab|2x1|3x2|对满足题中条件的a,b恒成立,求实数x的取值范围.解(1)因为a0,b0,4ab2ab,所以2,所以ab(ab),当且仅当且2,即a,b3时取等号,ab的最小值是.(2)若ab|2x1|3x2|对满足题中条件的a,b恒成立,则|2x1|3x2|,当x时,原不等式可化为2x13x2,所以x;当x时,原不等式可化为2x13x2,所以x,当x时,原不等式可化为2x13x2,所以x,综上,实数x的取值范围为.热点三不等式的证明算术几何平均不等式定理1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计二轮理科数学 教师WORD文档微专题45不等式选讲 创新 设计 二轮 理科 数学 教师 WORD 文档 专题 45 不等式
限制150内