押题预测卷01-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型)含答案.pdf
《押题预测卷01-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型)含答案.pdf》由会员分享,可在线阅读,更多相关《押题预测卷01-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型)含答案.pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、更多全科试卷及资料在网盘群,请关注公众号:高中试卷君决胜2024年高考数学押题预测卷01数 学数 学(新高考九省联考题型)(新高考九省联考题型)(考试时间:120分钟 试卷满分:150分)注意事项:1本试卷分第卷(选择题)和第卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答第卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3回答第卷时,将答案写在答题卡上。写在本试卷上无效。4考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 8 小题,每小题 5 分,共 40 分在每小题
2、给出的四个选项中,只有一项是符合题目要求的一、选择题:本题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的1已知1 iz=+,则1zz=+()A.13i55-B.1355i+C.31i55-D.31i55+2已知向量2,3a=r,1,bx=-r,则“()()abab+-rrrr”是“2 3x=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3已知集合2log1Axx=,2,2xBy yx=,则()A.ABB=B.ABA=C.ABB=ID.RBCAR=)(4从正方体八个顶点中选择四个顶点构成空间四面体,则该四面体不可能(
3、)A.每个面都是等边三角形B.每个面都是直角三角形C.有一个面是等边三角形,另外三个面都是直角三角形D.有两个面是等边三角形,另外两个面是直角三角形5已知函数 f x的定义域为R,exyf x=+是偶函数,3exyf x=-是奇函数,则 f x的最小值为()A.eB.2 2C.2 3D.2e6已知反比例函数kyx=(0k)的图象是双曲线,其两条渐近线为x轴和y轴,两条渐近线的夹角为2,将双曲线绕其中心旋转可使其渐近线变为直线yx=,由此可求得其离心率为2.已知函数313yxx=+的图象也是双曲线,其两条渐近线为直线33yx=和y轴,则该双曲线的离心率是()A.3B.2 3C.233D.433的
4、更多全科试卷及资料在网盘群,请关注公众号:高中试卷君7已知2sinsin3ab-=,2coscos1ab-=,则cos 22ab-=()A.18-B.154C.14D.78-8已知定义域为R的函数 f x的导函数为 fx,若函数31fx+和2fx+均为偶函数,且 28f=-,则 20231ifi=的值为()A.0B.8C.8-D.4二、选择题:本题共 3 小题,每小题 6 分,共 18 分在每小题给出的选项中,有多项符合题目要求全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分二、选择题:本题共 3 小题,每小题 6 分,共 18 分在每小题给出的选项中,有多项符合题目要求全部选对的
5、得 6 分,部分选对的得部分分,有选错的得 0 分9已知函数()sin()(0,0)f xxwj wj=+的最小正周期为,且函数()f x的图象关于直线12x=-对称,则下列说法正确的是()A.函数()f x的图象关于点2,03对称B.函数()f x在区间50,12内单调递增C.函数()f x在区间,4 2-内有恰有两个零点D.函数()f x的图象向右平移12个单位长度可以得到函数()cos2g xx=的图象10已知A、B是椭圆22132xy=的左、右顶点,P是直线2 3x=上的动点(不在x轴上),AP交椭圆于点M,BM与OP交于点N,则下列说法正确的是()A.23PAPBkk=B.若点2 3
6、,3 2P,则:12AOMPOMSSC.OP OMuuu r uuuu r是常数D.点N在一个定圆上11已知四棱锥PABCD-,底面ABCD是正方形,PA 平面ABCD,1AD=,PC与底面ABCD所成角的正切值为22,点M为平面ABCD内一点,且(01)AMADll=,点N为平面PAB内一点,5NC=,下列说法正确的是()A.存在l使得直线PB与AM所成角为6B.不存在l使得平面PAB 平面PBMC.若22l=,则以P为球心,PM为半径的球面与四棱锥PABCD-各面的交线长为264+D.三棱锥NACD-外接球体积最小值为5 56更多全科试卷及资料在网盘群,请关注公众号:高中试卷君三、填空题:
7、本题共3小题,每小题5分,共15分三、填空题:本题共3小题,每小题5分,共15分12.如图所示是一个样本容量为100的频率分布直方图,则由图形中的数据,可知其60%分位数为_.13.如图,“雪花曲线”也叫“科赫雪花”,它是由等边三角形生成的.将等边三角形每条边三等分,以每条边三等分的中间部分为边向外作正三角形,再将每条边的中间部分去掉,这称为“一次分形”;再用同样的方法将所得图形中的每条线段重复上述操作,这称为“二次分形”;L.依次进行“n次分形”(*Nn).规定:一个分形图中所有线段的长度之和为该分形图的长度.若将边长为1的正三角形“n次分形”后所得分形图的长度不小于120,则n的最小值是_
8、.(参考数据:lg20.3010,lg30.4771)14.在平面直角坐标系xOy中,已知圆22:4O xy+=,若正方形ABCD的一边AB为圆O的一条弦,则|OC的最大值为_.四、解答题:本题共 5 小题,共 77 分解答应写出文字说明、证明过程或演算步骤四、解答题:本题共 5 小题,共 77 分解答应写出文字说明、证明过程或演算步骤15.已知函数2()e()xf xxaxa=-(1)若曲线()yf x=在点(1,(1)f处的切线平行于x轴,求实数a的值;(2)求函数()f x的单调区间更多全科试卷及资料在网盘群,请关注公众号:高中试卷君16.生活中人们喜爱用跑步软件记录分享自己的运动轨迹.
9、为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:跑步软件一跑步软件二跑步软件三跑步软件四中学生80604020大学生30202010假设大学生和中学生对跑步软件的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X为这3人中最喜爱使用跑步软件二的人数,求X的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为1x,2x,3x,4x
10、,其方差为21s;样本中的大学生最喜爱使用这四款跑步软件的频率依次为1y,2y,3y,4y,其方差为22s;1x,2x,3x,4x,1y,2y,3y,4y的方差为23s.写出21s,22s,23s的大小关系.(结论不要求证明)更多全科试卷及资料在网盘群,请关注公众号:高中试卷君17如图,在四棱锥PABCD-中,PA 底面ABCD,/AD BC,ABBC点M在棱PB上,2PMMB=,点N在棱PC上,223PAABADBC=(1)若2CNNP=,Q为PD的中点,求证:/NQ平面PAB;(2)若直线PA与平面AMN所成角的正弦值为23,求PNPC的值18已知抛物线C:22ypx=(05p)上一点M的
11、纵坐标为3,点M到焦点距离为5.(1)求抛物线C的方程;(2)过点1,0作直线交C于A,B两点,过点A,B分别作C的切线1l与2l,1l与2l相交于点D,过点A作直线3l垂直于1l,过点B作直线4l垂直于2l,3l与4l相交于点E,1l、2l、3l、4l分别与x轴交于点P、Q、R、S.记DPQV、DABV、ABEV、ERS的面积分别为1S、2S、3S、4S.若12344S SS S=,求直线AB的方程.更多全科试卷及资料在网盘群,请关注公众号:高中试卷君19给定正整数3N,已知项数为m且无重复项的数对序列A:1122,mmx yxyxy满足如下三个性质:,1,2,iix yN,且1,2,iix
12、y im=;11,2,1iixy im+=-;,p q与,q p不同时在数对序列A中.(1)当3N=,3m=时,写出所有满足11x=的数对序列A;(2)当6N=时,证明:13m;(3)当N为奇数时,记m的最大值为T N,求T N.更多全科试卷及资料在网盘群,请关注公众号:高中试卷君决胜2024年高考数学押题预测卷01数 学数 学(新高考九省联考题型)(新高考九省联考题型)(考试时间:120分钟 试卷满分:150分)注意事项:1本试卷分第卷(选择题)和第卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答第卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标
13、号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3回答第卷时,将答案写在答题卡上。写在本试卷上无效。4考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的一、选择题:本题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的1已知1 iz=+,则1zz=+()A.13i55-B.1355i+C.31i55-D.31i55+【答案】A【解析】由题意知:1 iz=+,则1 iz=-,所以:1 i2i1 i13i12i2i2i55zz-=-+-.
14、故A项正确.故选:A.2已知向量2,3a=r,1,bx=-r,则“()()abab+-rrrr”是“2 3x=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由已知得,(1,3)abx+=+rr,(3,3)abx-=-rr,若()()abab+-rrrr,则()()0abab+-=rrrr,即2390 x+-=,解得2 3x=,所以“2 3x=”“()()abab+-rrrr”,但“()()abab+-rrrr”“2 3x=”,所以“()()abab+-rrrr”是“2 3x=”的必要不充分条件,故选:B3已知集合2log1Axx=,2,2xB
15、y yx=,则()A.ABB=B.ABA=C.ABB=ID.RBCAR=)(【答案】A【解析】由2log1x,则22loglog 2x,所以02x,所以 2log102Axxxx=,又2,204xBy yxyy=的最小正周期为,则2w=,得2w=,则()sin(2)f xxj=+,又函数()f x的图象关于直线12x=-对称,则()sin()1126fj-=-+=,则,Z62k kj-+=+,即2,Z3k kj=+,又0j,则23j=,故2()sin(2)3f xx=+,A,当23x=时,222()sin(2)sin20333f=+=,则函数()f x的图象关于点2,03对称,A正确;B,50
16、,12x,则22 32,332x+,更多全科试卷及资料在网盘群,请关注公众号:高中试卷君函数sinyx=在3(,)22单调递减,则函数()f x在区间50,12内单调递减,B错误;C,由2()sin(2)03f xx=+=,则22,Z3xkk+=,即,Z32kxk=-+,又,4 2x-,6x=,则有1个零点,C错误;D,函数()f x的图象向右平移12个单位长度,则2()sin2()sin(2)cos2()121232f xxxxg x-=-+=+=,D正确;故选:AD10已知A、B是椭圆22132xy=的左、右顶点,P是直线2 3x=上的动点(不在x轴上),AP交椭圆于点M,BM与OP交于点
17、N,则下列说法正确的是()A.23PAPBkk=B.若点2 3,3 2P,则:12AOMPOMSSC.OP OMuuu r uuuu r是常数D.点N在一个定圆上【答案】BCD【解析】如下图所示:对于A选项,设点2 3,0Pss,易知点3,0A-、3,0B,所以,292 33 2 33PAPBkksss=-+不定值,A错;对于B选项,当点P的坐标为2 3,3 2,3 2633 3PAk=,则直线PA的方程为633yx=+,即632xy=-,是更多全科试卷及资料在网盘群,请关注公众号:高中试卷君联立22632236xyxy=-+=,可得220yy-=,解得2y=或0y=,即2My=,所以,226
18、1221223 2612MMAOMPOMMPMPyAMySSPMyyyy+=-+-,B对;对于C选项,设直线AP的方程为30 xtyt=-,联立223236xtyxy=-+=可得22234 30tyty+-=,解得0y=或24 323tyt=+,则24 323Mtyt=+,22264 32 33 33322323Mttxyttt-=-=-=+,即点2222 33 34 3,2323ttMtt-+,联立32 3xtyx=-=可得2 33 3xyt=,即点3 32 3,Pt,所以,2222212183 34 312186232323ttOP OMttt-+=+=+uuu r uuuu r,C对;对
19、于D选项,设点00,M xy,其中00y,且2200132xy+=,则2200332yx-=-,2200002200002333332MAMByyyykkyxxx=-+-,3 333222 3OPMAtkkt=,则23MAOPkk=,所以,2233MAMBOPMBkkkk=-,则1OPMBkk=-,所以,OPBM,取线段OB的中点3,02E,连接NE,由直角三角形的几何性质可知1322NEOB=,所以,点N在以线段OB的直径的圆上,D对.故选:BCD.11已知四棱锥PABCD-,底面ABCD是正方形,PA 平面ABCD,1AD=,PC与底面更多全科试卷及资料在网盘群,请关注公众号:高中试卷君A
20、BCD所成角的正切值为22,点M为平面ABCD内一点,且(01)AMADll=,点N为平面PAB内一点,5NC=,下列说法正确的是()A.存在l使得直线PB与AM所成角为6B.不存在l使得平面PAB 平面PBMC.若22l=,则以P为球心,PM为半径的球面与四棱锥PABCD-各面的交线长为264+D.三棱锥NACD-外接球体积最小值为5 56【答案】BCD【解析】由PA 平面ABCD,底面ABCD是正方形,1AD=,可得2AC=,且PCA是PC与底面ABCD所成角,即2tan2PAPCAAC=,则1PA=,同理PBA是PB与底面ABCD所成角,故4PBA=,由题意,AM在面ABCD内,故直线P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 押题 预测 01 决胜 2024 年高 数学 模拟 新高 考九省 联考 题型 答案
限制150内