《对数的运算》教学设计.docx
《《对数的运算》教学设计.docx》由会员分享,可在线阅读,更多相关《《对数的运算》教学设计.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、对数的运算教学设计教学设计一、复习巩固,引入新课1 .对数的定义log” N = b,掌握其中a与N的取值范围.2 .指数式与对数式的互化,及两个重要公式.3 .指数靠运算性质.设计意图:对数的概念和指数第的运算性质是学习本节课的基础,学习新知前的简单 复习不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备.二、新课讲解问题1:请同学判断以下几组数是否相等:1(1 A10(1) IglOO + lg, lg 100x 10 I lojlog24 + log2-, 10g2 4x-. X k o/提出问题:由(1) (2)结果出发,同学们能看出它们具有一个怎样的共同 点吗?设计意图:让学生观
2、察,学会从特殊到一般,寻求规律.同学交流得出结论:当底数相同的时候,两个正数的对数之和等于两个正数 积的对数,那么这个结论是否正确呢?接下来具体证明这一结论.证明:已知设N = a.于是 =由对数的定义得到N = a = = log“ N ,MN = an,+n , + = log“(A/N),二.得到(1) log(MN) = logM + k)g“N.事实上,除了上面的这个运算性质之外,人们在对数的运算和推理过程中, 还发现了两个性质:(2) log“苏 = log“ M -logwN,即商的对数等于对数的差.(3) log 0,且 a w l;/?0;c0,且 c 工 1) log学生掌
3、握了前面的证明方法,已经具有了一定的推断能力,在这里进一步推 导对数换底公式,加强学生的计算推导能力.三、核心必记(1) 数的运算性质:如果。0且awl, M0, N0,那么:(1)log/MN) =log, M + log” N ;、 M(2) log = lognM-logfl7V:(3) log“ M = log“ R).2.对数换底公式:log”=(a 0,且 a 工 1;/? 0;c0,且 cwl).四、例题剖析例1求下列各式的值:(1) IgVlOO;(2) log2(47 x25).想一想:(1)对数式与指数式如何转化?(2)对数的运算性质有哪些? 117解:(1) lgV100
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数的运算 对数 运算 教学 设计
限制150内