《2024高中数学教学论文-例谈三角函数中的最值问题.doc》由会员分享,可在线阅读,更多相关《2024高中数学教学论文-例谈三角函数中的最值问题.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2024高中数学教学论文-例谈三角函数中的最值问题例谈三角函数中的最值问题 三角函数的最值问题,其实质上是对含有三角函数的复合函数的求值,是三角函数基础知识的综合应用。近几年高考题中,此类问题及经常出现,其解法主要是通过三角函数恒等变形,将函数关系式化为一个角的一种函数形式,然后借助于三角函数性质来解决。下面就其类型与解法举例说明。1 y=asinx + bcosx+c型例1 已知函数f(x)=2asin2 x-2asinxcosx+a+b(a0)的定义域为 0, ,值域为-5,1,求常数a、b的值。 解:f(x)=a(1-cos2x)-asin2x)+2a+b =-a(cos2x+sin2x
2、)+2a+b=-2asin(2x+ )+2a+b.x0,2x+,.-sin(2x+)1.因此,由f(x)的值域为-5,1可得,或或点评:本题将函数化为一个角的一种函数的形式。本题通过降次,逆用二倍角公式后,形成了y=asinx+bcosx+c型的函数,再应用函数的有界性求解。2 .y=asinx2+bsinx+c型例3求函数f(x)= 2-4asinx-cos2x的最大值和最小值。解:y=f(x)=2-4asinx-(1-2sin2x)=2sin2x-4asinx+1=2(sinx-a)2+1-2a2.设sinx=t,则-1t1,并且y=g(t)=2(t-a)2+1-2a2.(1)当a1时,有
3、ymax=g(-1)=3+4a,ymin=g(1)=3-4a.本题可以化为以sinx为自变量的二次函数,定义域为-1,1,利用二次函数在闭曲间上的最值求法。对于正弦函数、余弦函数的有界性,应引起充分的重视。3. y=asinx+b型例1 已知f(x)=sin(2x+)-sin2x+sinxcosx+求f(x)的最小值及此时x的值。解:f(x)=sin(2x+)-(1-cos2x)+ sin2x+= sin(2x+)+sin2x+cos2x=sin(2x+)+sin(2x+)=2sin(2x+).当x=k- (kZ) 时,f(x)的最小值-2.点评:化为一个角三角函数形式,再利用有界性求解。4(
4、xR)型例4求函数的最大值与最小值。方法一:去分母,原式化为sinx-ycosx=2-2y,即sin(x-)=,故1解得y,ymax=,ymin=方法二:将函数问题可转化为求两点A(2,2)和B(cosx,sinx )间连线斜率的范围。而点(cosx,sinx)的轨迹是以原点为圆心,1为半径的圆。通过点(2,2)的直线方程为y-2=k(x-2), 即kx-y+2(1-k)=0.原点到此直线的距离应为1.故=1,即得k=,ymax=,ymin=.点评:法一是利用三角函数的有界性;法二是数形结合法,将y 看成是两点连线的斜率;学习中应重视数形结合法处理最值的问题。5.综合型 例5:当0x时,函数f
5、(x)=的最小值为( )A.2 B.2 C. 4 D. 4解法一:f(x)= =4(“=”cosx=2sinxtanx=)故选C解法二:f(x)= =,f/(x)=0对0x0,又 yf(x)= ax3-3ax2+2ax比较系数可知b=-3a0,b0,d=0) o 1 22、 以三次函数为载体,培养学生综合运用知识的能力(1) 考查集合、映射等知识例4 设f(x)=x3-x,M=x|1-kxkN=x| f(x)0,若M N,求k的取值范围 解析 由f(x)0解得x-1或ax1,则N=x| x-1或ax1 ,又MN,得0k1,01-k1或k-1,1-k-1解得0k1或k故k的取值范围是(0,1)(
6、2)、考查函数不等式等知识例5 设函数f(x)=x3(xR),若时, 恒成立,则实数m的取值范围是( )A、(0,1) B、(-,0) C、 D、(-,1)解析 由函数f(x)=x3在R上为奇函数知,又f(x)=x3在R上为增函数,得即 设,由知,故选D(3)、考查二项式定理及函数知识例6 设f(x)=x3-3x2+3x+1,则f(x)的反函数f-1(x)= 解析 结合二项式定理知f(x)=(x-1)3+2,令f(x)=y有y-2=(x-1)3得x-1=,x=+1故f-1(x)= +13、 以三次函数为核心,培养学生分析问题、解决问题的能力以三次函数为核心,与不等式、数列、解析几何等知识结合综
7、合考查学生分析问题、解决问题的能力。例7 设f(x)=x3,等差数列an中a3=7,a1+a2+a3=12,记Sn=,令bn= an Sn,数列的前项和为Tn。(1) 求an的通项公式和Sn(2) 求的值解析 (1)设数列an的公差为d,由a3= a1+d=7, ,a1+a2+a3=3a1+3d=12解得a1=1,d=3an=3n-2, f(x)=x3 Sn=an+1(2) bn= an Sn=(3n-2)(3n+1), 故例8 设曲线C的方程是y=x3-x,将C沿x轴,y轴的正向分别平行移动t,s单位长度后得到曲线C1。(1) 写出曲线C1的方程;(2) 证明曲线C与C1关于点对称;(3) 如果曲线C与C1有且仅有一个公共点,证明S=且.解析 (1)曲线C1的方程为y=(x-t)3-(x-t)+s(3) 证明:在曲线C上任意取一点B1(x1,y1),设B2(x2,y2)是B1关于A的对称点,则有,代入曲线C的方程得x2和y2满足的方程:S-y2=(t-x2)3-(t-x2)即y2=(t-x2)3-(t-x2)+S可知点B2(x2,y2)在曲线C1上。(4) 证明:由曲线C与C1有且仅有一个公共点得方程组有且仅有一组解,消去y整理得3tx2-3t2x+(t3-t-s)=0,这个关于的一元二次方程有且仅有一个根,所以且即9t4-12t(t3-t-s)=0且S=且
限制150内