2024量子人工智能技术白皮书-量子信息网络产业联盟.pdf
《2024量子人工智能技术白皮书-量子信息网络产业联盟.pdf》由会员分享,可在线阅读,更多相关《2024量子人工智能技术白皮书-量子信息网络产业联盟.pdf(139页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、量子人工智能技术白皮书 1 一、绪论(一一)人工智能人工智能 1.人工智能概述人工智能概述 人工智能是机器,特别是计算机系统对人类智能过程的模拟。这些过程包括学习、推理和自我纠正。人工智能的特定应用包括专家系统、语音识别和计算机视觉等。人工智能是由美国计算机科学家约翰麦卡锡于1956年在达特茅斯会议上创造出来的。近年来它获得各大媒体与公众的持续关注,部分原因在于大数据,或者现在进行的业务收集数据的速度、规模和种类的增加。人工智能可以执行诸如比人类更有效地识别数据中的模式等任务,使企业能够从数据中获得更多洞察力。人工智能的发展大致经历了三个重要阶段:1)1950-1970 年代:即人工智能的“逻
2、辑推理”时代。1956 年夏天,美国达特茅斯学院举行了历史上第一次人工智能研讨会,被认为是人工智能诞生的标志。在会上,麦卡锡首次提出了“人工智能”概念,纽厄尔和西蒙则展示了编写的逻辑理论机器。人们当时认为只要机器具有逻辑推理能力就可以实现人工智能,但后来发现这样还是远远达不到智能化水平。2)1970-1990 年代:即人工智能的“知识工程”时代。专家系统的出现使人工智能研究出现新高潮。DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。量子人工智能技术白皮书 2 人们
3、当时认为要让机器学习知识,才能让机器变得智能化,但后来发现将总结好的知识灌输给计算机十分困难。3)2000 年至今:即人工智能的“数据挖掘”时代。随着各种机器学习算法的提出和应用,特别是深度学习技术的发展,人们希望机器能够通过大量数据分析,从而自动学习出知识并实现智能化水平。这一时期,随着计算机硬件水平的提升,大数据分析技术的发展,机器采集、存储、处理数据的水平有了大幅提高。特别是深度学习技术对知识的理解比之前浅层学习有了很大的进步,Alpha Go 和中韩围棋高手过招大幅领先就是目前人工智能的高水平代表之一。人工智能可以通过多种方式进行分类,这里列举两种分类的方法,第一种将人工智能系统分类为
4、弱人工智能或强人工智能。弱人工智能,也称为窄人工智能,是为特定任务设计和训练的人工智能系统。虚拟个人助理,如 Apple 的 Siri,是一种弱人工智能的形式。强人工智能,也称为人工智能,是一种具有广泛的人类认知能力的人工智能系统,因此当提出一项不熟悉的任务时,它具有足够的智能来寻找解决方案,也就是是否能够通过由数学家阿兰图灵于 1950 年开发的图灵测试,判断计算机是否能真像人一样思考,尽管该方法存在争议;第二种是来自密歇根州立大学综合生物学和计算机科学与工程助理教授 Arend Hintze 的分类方法。他将人工智能分为四类,从现有的人工智能系统类型到尚不存在的有感知系统。2.传统人工智能
5、特点传统人工智能特点 人工智能(Artificial Intelligence,以下简称 AI)的四大特点如下:量子人工智能技术白皮书 3 1)自我学习和自我进化:AI系统能够自我学习和自我进化,不断提高自身的智能水平。2)处理和分析数据的能力:AI系统能够通过数据的分析和处理,提取出有用的信息和模式,并做出预测和决策。3)自动化和智能化的任务:AI系统能够执行各种自动化和智能化的任务,如语音识别、机器翻译、自动驾驶等。4)与人交互的能力:AI系统能够与人进行交互,如通过语音、图像等方式与人类进行对话,从而不断学习和适应人类的语言和文化。(二二)量子信息技术与人工智能的融合量子信息技术与人工智
6、能的融合 量子信息技术和人工智能都是当今最前沿的技术领域之一,它们在各自的领域内都有非常强的影响力和应用前景。近年来,越来越多的研究者开始将量子计算和人工智能进行深度融合,旨在实现更快速、更准确和更高效的计算和决策。1.量子信息技术概述量子信息技术概述 量子信息技术是量子物理与信息科学交叉的新生学科,其物理基础是量子力学。而量子力学则是在 1920 年由爱因斯坦等科学家首次创立。自从问世以来,量子科学已经先后孕育出原子弹、激光、核磁共振等新技术,成为20世纪最重要的科学发现之一。进入21世纪,量子科技革命的第二次浪潮即将来临。第二次量子科技革命将催生量子计算、量子通信和量子测量等一批新兴技术,
7、将极大地改变和提升人类获取、传输和处理信息的方式和能力。其中,量子通信是较为重要的安全技术,它是利用量子态作为信息载体来进行信量子人工智能技术白皮书 4 息交互的通信技术,利用单个光量子不可分割和量子不可克隆原理的性质,在原理上确保非授权方不能复制与窃取量子信道内传递的信息,以此保证信息传输安全。量子信息技术的三大基本原理:量子比特、量子叠加、量子纠缠。量子比特是量子计算机的最小储存信息单位,一个量子比特可以表示 0 也可以表示 1,更可以表示 0 和 1 的叠加,即可处在 0 和 1两种状态按照任意比例的叠加,因此,量子比特包含的信息量远超过只能表示 0 和 1 的经典比特。量子信息技术研究
8、已成为当前世界科技研究的一大热点。国际社会纷纷加大研发力度和投入,力争抢占技术制高点。中国近年来对量子信息技术的重视和支持力度也逐渐加大,习近平总书记在2018 年强调“以人工智能、量子信息、移动通信、物联网、区块链为代表的新一代信息技术加速突破应用”,进一步肯定了量子信息技术的战略地位。2.量子信息技术与人工智能双向赋能量子信息技术与人工智能双向赋能 以量子计算为例,作为量子信息技术的关键核心技术,量子计算与人工智能的结合,能够在未来有效提升算力供给能力,从而进一步推动人工智能的发展和应用。现在的人工智能系统使用的是成百上千个 GPU 来提升计算能力。这使得处理学习或者智能的能力得到比较大的
9、增强。然而这套系统也需要庞大的硬件机柜和相配套的硬件机房,较大的人工智能硬件系统需要将近半个足球场的占地空间。当量子芯片中的量子比特达到一定数量后,计算能力将完全满量子人工智能技术白皮书 5 足人工智能的算力需求。实现人工智能,原来需要一千台或者一万台计算机的规模,使用量子计算机可能就只需要一台,也就是说人工智能将不再依赖于大型服务器集群,或者庞大的云计算中心。在人工智能领域,量子计算的优势主要表现在其可以通过量子并行性和量子态叠加等优势来处理复杂的计算问题,从而提高机器学习算法的训练速度和准确度;通过量子搜索、量子优化等方法,提高优化算法的效率和精度,从而加速解决各种优化问题;通过量子隐形传
10、态和量子密钥分发等技术,保障数据的安全传输和存储,进而保障数据的隐私和安全等。在量子计算领域,人工智能的优势主要表现在以下两个方面:一是改善量子计算中的算法。量子计算需要开发新的算法和数据结构来适应量子系统的特点。人工智能技术可以帮助优化和改进量子算法的设计和实现,从而提高量子计算的效率和准确度。二是改善量子计算中的控制。量子计算需要高精度的控制和测量,而这些控制和测量通常会受到各种噪声和误差的影响。人工智能技术可以帮助改善量子计算中的控制和测量,从而提高量子计算的稳定性和可靠性。因此,量子计算和人工智能的深度融合可以带来巨大的优势和潜力,将有助于推动计算机科学和技术的发展。二、量子人工智能概
11、述(一一)量子人工智能量子人工智能 1.量子人工智能的定义量子人工智能的定义 量子人工智能技术白皮书 6 量子人工智能(Quantum Artificial Intelligence,QAI)是一种基于量子计算的人工智能技术。它利用量子计算机的特殊性质,如量子叠加和量子纠缠,来加速机器学习和优化算法,从而实现更高效、更准确的人工智能应用。2.量子人工智能的主要应用量子人工智能的主要应用 利用量子人工智能上述自身的这些性质,量子人工智能可以设计出一些特殊的算法,来解决传统人工智能难以处理的问题。例如,量子人工智能可以用量子神经网络(Quantum Neural Network,简称QNN)来模拟
12、复杂的非线性函数,从而提高人工神经网络的表达能力和学习效率。量子人工智能也可以用量子优化算法(Quantum Optimization Algorithm,简称 QOA)来寻找最优解或近似最优解,从而解决组合优化、约束满足、机器学习等领域的难题。在现实生活中量子人工智能也有着广泛的应用前景,它可以在各个领域提供更好的解决方案和服务。以下是一些量子人工智能的应用探索发展方向示例:1)医疗健康:量子人工智能可以帮助医生进行更精确的诊断和治疗,例如利用量子机器学习来分析医疗数据,发现潜在的疾病风险和治疗方案;利用量子优化算法来设计新型的药物和疫苗;利用量子神经网络来模拟生物分子的结构和功能。2)金融
13、服务:量子人工智能可以帮助金融机构进行更高效的风险管理和投资决策,例如利用量子机器学习来预测市场走势和价格波动;利用量子优化算法来优化资产组合和交易策略;利用量子神经网络来模拟复杂的金融模型和场景。量子人工智能技术白皮书 7 3)智慧城市:量子人工智能可以帮助城市管理者进行更智能的规划和运营,例如利用量子机器学习来分析城市数据,提升公共服务和安全水平;利用量子优化算法来优化交通网络和能源分配;利用量子神经网络来模拟城市环境和社会行为。总之,量子人工智能是一种基于量子计算的人工智能技术,它可以利用量子计算机的特殊性质来加速机器学习和优化算法,从而实现更高效、更准确的人工智能应用。随着量子计算机的
14、发展和应用,量子人工智能将成为未来人工智能领域的重要发展方向。(二二)量子人工智能技术现状及趋势量子人工智能技术现状及趋势 1.全球量子人工智能技术投资状况全球量子人工智能技术投资状况 全球量子人工智能技术的投融资状况非常活跃,而且呈现出多元化和不断增长的特点。这个领域在国内也受到了高度关注,投资机构对于其前景也十分看好。随着量子人工智能技术的不断发展,未来有理由相信该领域的前景更加广阔。2021 年,NORDIC QUANTUM COMPUTING GROUP 获得 875万美元的种子轮融资,由英特尔、M Waldau 和 Start ENGINE 的超级天使基金等多家机构和个人共同投资;Q
15、uantistry 完成 175 万美元的种子融资,由 Gray Ghost Ventures、SEIF and Joseph Heiderich 等多家机构和个人共同投资;QC WARE 获得 2500 万美元 B 轮融资,该轮融资由 Koch Industries 投资部门 Koch Disruptive Technologies 和世界领先的聚合物公司之一 Covestro 共同领投,三星风投和回归投资者花旗、D.E.Shaw 集团和 Pegasus Tech Ventures 跟投。2022 年,Quantistry 宣布完成了 500 万美元的超额认购种子扩展量子人工智能技术白皮书
16、8 融资,由 Redline Capital 领投,现有投资者 Gray Ghost Ventures 跟投;Quantum Machines完成了5000万美元的B轮融资,由Red Dot Capital Partners 领投,Exor、Claridge Israel、Samsung NEXT、Valor Equity Partners、Atreides Management LP 参投,TLV Partners、Battery Ventures、Altshuler Shaham 以及其他现有投资者跟投,迄今为止,Quantum Machines 筹集的总资金达到了 7300 万美元;Za
17、pata Computing 完成了一轮 3800 万美元的 B 轮融资,投资方包括霍尼韦尔(Honeywell)等知名公司。2.全球量子人工智能技术政策全球量子人工智能技术政策 全球量子人工智能技术的政策布局正不断加强。以下是一些主要国家和地区在量子人工智能技术领域的政策情况。美国政府自 2018 年开始连续发布了多项战略性文件,包括国家量子倡议法案、量子网络基础设施法案、量子网络基础设施和劳动力发展法案等,以提高量子科技在全国科研领域中的地位,推动量子科技的发展。此外,美国政府还与多个私营公司合作,共同推动量子人工智能技术的发展。我国近年来加强了量子科技领域的政策布局,发布了多项重要文件,
18、将量子科技列为未来发展的重点领域之一。同时也在人工智能领域布局和推动与量子计算等领域的融合发展,新一代人工智能发展规划中明确指出,布局前沿基础理论研究。针对可能引发人工智能范式变革的方向,前瞻布局高级机器学习、类脑智能计算、量子智能计算等跨领域基础理论研究。量子智能计算理论重点突破量子加速的机器学习方法,建立高性能计算与量子算法混合模型,量子人工智能技术白皮书 9 形成高效、精确、自主的量子人工智能系统架构。欧洲议会于 2018 年通过了量子技术公约,旨在推动欧盟及其成员国在量子技术领域的协同发展。此外,欧盟还提出了“欧洲量子计划”,旨在推动欧盟在量子技术领域的投资和研发,打造全球领先的量子技
19、术产业链。日本政府在 2017 年提出了量子计算机技术研究开发培育事业,旨在促进日本在量子计算机领域的研发和应用。此后,日本政府又提出了量子技术创新计划,旨在推动日本在量子科技领域的创新和发展。总之,全球主要国家和地区都在量子人工智能技术领域加强了政策布局,以推动该领域的发展和产业化的进程。3.全球量子人工智能技术发展趋势全球量子人工智能技术发展趋势 量子人工智能利用量子计算的高并行性,提高对大数据的处理、分析和挖掘能力,并且借鉴量子力学的原理,促进新型算法的产生,能够提供全新的计算范式。量子人工智能也有望成为人工智能市场增长的重要驱动因素。因此,受到产学研用各方的高度关注,但是总体来讲,量子
20、人工智能技术和产业整体还处于技术萌芽期。美国著名的咨询公司 Gartner 将一项技术的发展进程分为五个阶段:技术萌芽期、期望膨胀期、泡沫破裂低谷期、稳步爬升复苏期和生产成熟期。量子人工智能目前主要集中在实验室研发、算法和应用场景的探索,少数商业公司推出简单的应用服务或案例演示,符合 Gartner 对技术萌芽期的定义。处于萌芽期的技术或服务在短期内会快速发展,在1-2年内进入期望膨胀期,但是距离成熟商用至少量子人工智能技术白皮书 10 需要 10 年的时间。虽然部分量子人工智能算法在含噪中等规模量子(NISQ)硬件上可以有效运行,但现阶段还未成为人工智能领域的主流方案。量子人工智能的发展面临
21、诸多挑战。一是量子计算硬件路线尚未收敛,规模和性能无法满足应用需求。量子处理器是执行量子人工智能算法的“核心引擎”,是制备、操作和测量量子比特与量子逻辑门的物理载体,也是现阶段量子计算研究与应用的关键方向之一,超导、离子阱、硅基半导体、光量子和中性原子等技术路线呈现多元化发展和开放竞争态势,尚未出现技术路线融合收敛趋势。此外量子人工智能的加速优势还体现在问题规模上,但是问题规模越大,量子线路的宽度和深度随之增大,所需要的量子硬件资源(量子比特数目)越多,对量子比特性能(如保真度、相干时间)的要求也越高,当前的硬件水平无法满足大规模应用需求。二是缺乏有效的数据编码方法。目前绝大部分的数据都是经典
22、的,而运行量子人工智能算法需要将经典的数据编码到量子比特上。学术界已经提出诸多中经典数据的量子表示方法,但是仍处于理论研究和实验验证的阶段。如何高效、准确地进行经典数据的编码仍是未来关注的热点。三是缺乏面向NISQ的成熟算法。当前量子计算硬件处于从实验样机向工程化样机转化的关键阶段,但是量子比特数目只有数百个,并且量子比特的相干时间和保真度还不够理想,量子错误缓解和量子纠错等技术尚不成熟。因此在设计量子人工智能算法时要充分考虑当前的硬件水平并且能体现量子加速优势。目前尚没有成熟的量子人工智能算法被广泛应用于实际的生产生活中。量子人工智能技术白皮书 11 三、量子人工智能关键技术(一一)量子人工
23、智能平台框架量子人工智能平台框架 鉴于量子人工智能领域在未来发展的广阔前景,在真正的容错通用量子计算机落地前,国内外各家相关公司早已在其计算框架技术、软件服务方面进行了布局,以利用先发优势吸引和培养潜在用户。各厂商等通过建立自己的量子人工智能及量子计算等平台框架来提升行业影响力,打通自主研发的芯片和算法,实现软硬协同、赋能百业。以量子机器学习平台框架为例,其关键技术组成包括:训练数据集管理、量子机器学习模型的定义与训练框架、量子机器学习的训练过程管理与部署、量子机器学习模型分析辅助工具、量子机器学习实例算法库等。下面是一些国内外主流量子公司的量子人工智能相关的平台框架技术。1.IBM Qisk
24、it IBM 的量子产品主要以 Qiskit 为核心构建。其中,Qiskit 部分的核心是由四部分组成,包括 Terra 线路编辑、Aer 计算仿真模块、Ignis纠错模块以及AquaIDE模块。Terra线路编辑模块是在线路和脉冲级别上构成量子程序的基础模块,针对特定设备进行了优化,同时管理远程量子设备上所执行的一批实验。Aer计算仿真模块可以在经典处理器在尽最多大程度模拟量子计算。Aer 是基于 QASM 制作。Ignis 纠错模块包括更好地表征错误,改善门控,以及在存在噪声的情况下进行计算。AquaIDE 模块可用于构建量子计算应用程序。Qiskit 机器学习包目前只包含样本数据集。Qi
25、skit 有一些分类算量子人工智能技术白皮书 12 法,如 QSVM 和 VQC,数据可以用于实验,还有 QGAN 算法。图 1 Qiskit 梯度计算框架 除了 Qiskit 机器学习提供的模型外,还有 TorchConnector,允许用户将所有的量子神经网络直接集成到PyTorch开源机器学习库中。Qiskit 内置梯度计算算法,不仅支持量子梯度也支持函数梯度计算,除了支持期望值的一阶梯度也支持二阶梯度(Hessians)计算,这包括了PyTorch在反向传播过程中计算的总体梯度,同时也考虑到了量子神经网络。Qiskit 灵活的设计还允许将来构建到其他包的连接器。2.Xanadu Pen
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 量子 人工智能 技术 白皮书 信息网络 产业 联盟
限制150内