2024圆锥曲线定点、定直线、定值问题.doc
《2024圆锥曲线定点、定直线、定值问题.doc》由会员分享,可在线阅读,更多相关《2024圆锥曲线定点、定直线、定值问题.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2024圆锥曲线定点、定直线、定值问题定点、定直线、定值专题1、已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为()求椭圆的标准方程;()若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标【标准答案】(I)由题意设椭圆的标准方程为, (II)设,由得,.以AB为直径的圆过椭圆的右顶点,(最好是用向量点乘来),解得,且满足.当时,直线过定点与已知矛盾;当时,直线过定点综上可知,直线过定点,定点坐标为2、已知椭圆C的离心率,长轴的左右端点分别为,。()求椭圆C的方程;()设直线与椭圆C交于P、Q两点,直线与交于
2、点S。试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。解法一:()设椭圆的方程为。1分,。4分椭圆的方程为。5分()取得,直线的方程是直线的方程是交点为7分,若,由对称性可知交点为若点在同一条直线上,则直线只能为。8分以下证明对于任意的直线与直线的交点均在直线上。事实上,由得即,记,则。9分设与交于点由得设与交于点由得10,12分,即与重合,这说明,当变化时,点恒在定直线上。13分解法二:()取得,直线的方程是直线的方程是交点为7分取得,直线的方程是直线的方程是交点为若交点在同一条直线上,则直线只能为。8分以下证明对于任意的直线与直线的
3、交点均在直线上。事实上,由得即,记,则。9分的方程是的方程是消去得以下用分析法证明时,式恒成立。要证明式恒成立,只需证明即证即证式恒成立。这说明,当变化时,点恒在定直线上。解法三:()由得即。记,则。6分的方程是的方程是7分由得9分即12分这说明,当变化时,点恒在定直线上。13分3、已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为 ()求椭圆的方程; ()过点作直线交于、两点,试问:在轴上是否存在一个定点,为定值?若存在,求出这个定点的坐标;若不存在,请说明理由解:(I)设椭圆E的方程为,由已知得:。2分椭圆E的方程为。3分()法一:假设存在符合条件的点,又设,则:
4、。5分当直线的斜率存在时,设直线的方程为:,则由得7分所以9分对于任意的值,为定值,所以,得,所以;11分当直线的斜率不存在时,直线由得综上述知,符合条件的点存在,起坐标为13分法二:假设存在点,又设则:=.5分当直线的斜率不为0时,设直线的方程为,由得7分9分设则11分当直线的斜率为0时,直线,由得:综上述知,符合条件的点存在,其坐标为。13分4、已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作与坐标轴不垂直的直线,交椭圆于、两点。 (I)求椭圆的标准方程; ()设点是线段上的一个动点,且,求的取值范围; ()设点是点关于轴的对称点,在轴上是否存在一个定点,使得
5、、三点共线?若存在,求出定点的坐标,若不存在,请说明理由。解法一: (I)设椭圆方程为,由题意知故椭圆方程为 ()由(I)得,所以,设的方程为()代入,得 设则,由,当时,有成立。()在轴上存在定点,使得、三点共线。依题意知,直线BC的方程为, 令,则的方程为、在直线上,在轴上存在定点,使得三点共线。解法二:()由(I)得,所以。设的方程为 代入,得设则 当时,有成立。 ()在轴上存在定点,使得、三点共线。 设存在使得、三点共线,则, , 即 ,存在,使得三点共线。6、(福建卷)已知椭圆的左焦点为F,O为坐标原点。()求过点O、F,并且与椭圆的左准线l相切的圆的方程;()设过点F且不与坐标轴垂
6、直交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力。解:(I)圆过点O、F,M在直线上。设则圆半径由得解得所求圆的方程为(II)设直线AB的方程为代入整理得直线AB过椭圆的左焦点F,方程有两个不等实根。记中点则的垂直平分线NG的方程为令得点G横坐标的取值范围为圆锥曲线的焦点弦长新解关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 圆锥曲线 定点 直线 问题
限制150内