2022-2023学年九年级数学下册举一反三系列专题5.7 二次函数中的新定义问题专项训练(30道)(举一反三)(苏科版)含解析.docx
《2022-2023学年九年级数学下册举一反三系列专题5.7 二次函数中的新定义问题专项训练(30道)(举一反三)(苏科版)含解析.docx》由会员分享,可在线阅读,更多相关《2022-2023学年九年级数学下册举一反三系列专题5.7 二次函数中的新定义问题专项训练(30道)(举一反三)(苏科版)含解析.docx(192页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022-2023学年九年级数学下册举一反三系列专题5.7 二次函数中的新定义问题专项训练(30道)【苏科版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对新定义函数的理解!一选择题(共10小题)1(2022市中区校级模拟)定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记P|x|+|y|若抛物线yax2+bx+1与直线yx只有一个交点C,已知点C在第一象限,且2C4,令t2b24a+2020,则t的取值范围为()A2017t2018B2018t2019C2019t2020D202
2、0t20212(2022市中区二模)定义:对于已知的两个函数,任取自变量x的一个值,当x0时,它们对应的函数值相等;当x0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数例如:正比例函数yx,它的相关函数为y=x(x0)-x(x0)已知点M,N的坐标分别为(-12,1),(92,1),连结MN,若线段MN与二次函数yx2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A3n1或1n54B3n1或1n54C3n1或1n54D3n1或1n543(2022青秀区校级一模)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点若二次函数yx2x+c(c为常数)在2x4的
3、图象上存在两个二倍点,则c的取值范围是()A2c14B4c94C4c14D10c944(2022秋汉阳区期中)我们定义:若点A在某一个函数的图象上,且点A的横纵坐标相等,我们称点A为这个函数的“好点”若关于x的二次函数yax2+tx2t对于任意的常数t恒有两个“好点”,则a的取值范围为()A0a1B0a12C13a12D12a15(2022秋和平区校级月考)对于实数a,b,定义运算“*”:a*b=a2-ab(ab)b2-ab(ab),例如:4*2,因为42,所以4*242428若函数y(2x)*(x+1),则下列结论:方程(2x)*(x+1)0的解为1和1;关于x的方程(2x)*(x+1)m有
4、三个解,则0m1;当x1时,y随x的增大而增大;直线ykxk与函数y(2x)*(x+1)图象只有一个交点,则k2;当x1时,函数y(2x)*(x+1)的最大值为1其中正确结论的序号有()ABCD6(2022莱芜区二模)定义:平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的折线距离,记为|M|x|+|y|(其中的“+”是四则运算中的加法),若抛物线yax2+bx+1与直线yx只有一个交点M,已知点M在第一象限,且2|M|4,令t2b24a+2022,则t的取值范围为()A2018t2
5、019B2019t2020C2020t2021D2021t20227(2022岳阳模拟)在平面直角坐标系中,对于点P(m,n)和点P(m,n),给出如下新定义,若n=|n|(当m0时)n-2(当m0时),则称点P(m,n)是点P(m,n)的限变点,例如:点P1(1,4)的限变点是P1(1,2),点P2(2,1)的限变点是P2(2,1),若点P(m,n)在二次函数yx2+4x+1的图象上,则当1m3时,其限变点P的纵坐标n的取值范围是()A1n3B1n4C1n3D1n48(2022自贡模拟)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”如图,直线
6、l:y=13x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),Bn(n,yn) (n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),An+1(xn+1,0)(n为正整数)若x1d(0d1),当d为()时,这组抛物线中存在美丽抛物线A512或712B512或1112C712或1112D7129(2022秋诸暨市期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y(xm)2m与正
7、方形OABC有交点时m的最大值和最小值之差为()A5B7+172C4D7-17210(2022秋亳州月考)定义:在平面直角坐标系中,过一点P分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P叫做和谐点,所围成的矩形叫做和谐矩形已知点P是抛物线yx2+k上的和谐点,所围成的和谐矩形的面积为16,则k的值可以是()A16B4C12D18二填空题(共10小题)11(2022芦淞区模拟)定义a,b,c为函数yax2+bx+c的特征数,下面给出特征数位2m,1m,1m的函数的一些结论:当m3时,函数图象的顶点坐标是(13,83);当m1时,函数图象截x轴所得的线段长度
8、等于2;当m1时,函数在x14时,y随x的增大而减小;当m0时,函数图象经过同一个点上述结论中所有正确的结论有 (填写所有正确答案的序号)12 (2022秋浦东新区期末)定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段MN长就是抛物线关于直线的“割距”已知直线yx+3与x轴交于点A,与y轴交于点B,点B恰好是抛物线y(xm)2+n的顶点,则此时抛物线关于直线y的割距是 13(2022宣州区校级自主招生)对某一个函数给出如下定义:若存在实数m0,对于任意的函数值y,都满足mym,则称这个函数是有界函数,在所有满足条件的m中,其最小值称为这个函数的边界值例如,如图中的函
9、数是有界函数,其边界值是1将函数yx2+1(2xt,t0)的图象向上平移t个单位,得到的函数的边界值n满足94n52时,则t的取值范围是 14(2022秋德清县期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”若抛物线yax22ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是 15(2022秋鄞州区校级期末)定义:在平面直角坐标系中,若点A满足横、纵坐标都为整数,则把点A叫做“整点”如:B(3,0)、C(1,3)都是“整点”当抛物线yax24ax+1与其关于x轴对称的抛物线围成的封闭区域内(包括边界)共有9个整点时,a的取值范
10、围 16(2022秋思明区校级期中)在直角坐标系xOy中,对于点P(x,y)和Q(x,y),给出如下定义:若y=y(x0)-y(x0),则称点Q为点P的“可控变点”请问:若点P在函数yx2+16(5xa)的图象上,其“可控变点”Q的纵坐标y的取值范围是16y16,则实数a的取值范围是 17(2022徐汇区模拟)定义:将两个不相交的函数图象在竖直方向上的最短距离称为这两个函数的“和谐值”如果抛物线yax2+bx+c(a0)与抛物线y(x1)2+1的“和谐值”为2,试写出一个符合条件的函数解析式: 18(2022二道区校级模拟)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数
11、”如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y(xm)2m与正方形OABC有公共点时m的最大值是 19(2022郫都区模拟)定义:由a,b构造的二次函数yax2+(a+b)x+b叫做一次函数yax+b的“滋生函数”,一次函数yax+b叫做二次函数yax2+(a+b)x+b的“本源函数”(a,b为常数,且a0)若一次函数yax+b的“滋生函数”是yax23x+a+1,那么二次函数yax23x+a+1的“本源函数”是 20(2022亭湖区校级开学)定义a,b,cc(acb),即(a,b,c)的取值为a,b,c的中位数,例如:1,3,22,8,3,66,已知函数yx2+
12、1,x+2,x+3与直线y=13x+b有3个交点时,则b的值为 三解答题(共10小题)21(2022工业园区模拟)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”例如,点(1,1)是函数yx+2的图象的“好点”(1)在函数yx+3,y=3xyx2+2x+1的图象上,存在“好点”的函数是 ;(填序号)(2)设函数y=-4x(x0)与ykx+3的图象的“好点”分别为点A、B,过点A作ACy轴,垂足为C当ABC为等腰三角形时,求k的值;(3)若将函数yx2+2x的图象在直线ym下方的部分沿直线ym翻折,翻折后的部分与图象的其余部分组成了一个新的图象当该图象上恰有3
13、个“好点”时,求m的值22(2022春荷塘区校级期中)如图1,若关于x的二次函数yax2+bx+c(a,b,c为常数且a0)与x轴交于两个不同的点A(x1,0),B(x2,0)(x10x2),与y轴交于点C,抛物线的顶点为M,O是坐标原点(1)若a1,b2,c3求此二次函数图象的顶点M的坐标;定义:若点G在某一个函数的图象上,且点G的横纵坐标相等,则称点G为这个函数的“好点”求证:二次函数yax2+bx+c有两个不同的“好点”(2)如图2,连接MC,直线MC与x轴交于点P,满足PCAPBC,且tanPBC=12,PBC的面积为13,求二次函数的表达式23(2022春海门市期中)定义:在平面直角
14、坐标系xOy中,若某函数的图象上存在点P(x,y),满足ymx+m,m为正整数,则称点P为该函数的“m倍点”例如:当m2时,点(2,2)即为函数y3x+4的“2倍点”(1)在点A(2,3),B(2,3),C(3,2)中, 是函数y=6x的“1倍点”;(2)若函数yx2+bx存在唯一的“4倍点”,求b的值;(3)若函数yx+2m+1的“m倍点”在以点(0,10)为圆心,半径长为2m的圆外,求m的所有值24(2022费县一模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”,例如,点(2,2)是函数y2x2的图象的“等值点”(1)分别判断函数y=5x,y=x+2的图
15、象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)写出函数yx2+2的等值点坐标;(3)若函数yx2+2(xm)的图象记为W1,将其沿直线xm翻折后的图象记为W2当W1,W2两部分组成的图象上恰有2个“等值点”时,请写出m的取值范围25(2022春武侯区校级月考)如图1,在平面直角坐标系xOy中,已知抛物线yax2+bx+c与x轴交于点A(1,0),B(5,0)两点,与y轴交于点C(0,5)(1)求抛物线解析式;(2)如图2,作出如下定义:对于矩形DEFG,其边长EF1,DE2k(k为常数,且k0),其矩形长和宽所在直线平行于坐标轴,矩形可以在平面内自由的平移
16、,且EG所在直线与抛物线无交点,则称该矩形在“游走”,每一个位置对应的矩形称为“悬浮矩形”;对与每一个“悬浮矩形”,若抛物线上有一点P,使得PEG的面积最小,则称点P是该“悬浮矩形”的核心点请说明“核心点”P不随“悬浮矩形”的“游走”而变化,并求出“核心点”P的坐标(用k表示);若k1,DF所在直线与抛物线交于点M和N(M在N的右侧),是否存在这样的“悬浮矩形”,使得PMN是直角三角形,若存在,并求出“悬浮矩形”中对角线DF所在直线的表达式;若不存在,说明理由v26(2022武侯区模拟)【阅读理解】定义:在平面直角坐标系xOy中,点P为抛物线C的顶点,直线l与抛物线C分别相交于M,N两点(其中
17、点M在点N的右侧),与抛物线C的对称轴相交于点Q,若记S(l,C)PQMN,则称S(l,C)是直线l与抛物线C的“截积”【迁移应用】根据以上定义,解答下列问题:如图,若直线l的函数表达式为yx+2(1)若抛物线C的函数表达式为y2x21,分别求出点M,N的坐标及S(l,C)的值;(2)在(1)的基础上,过点P作直线l的平行线l,现将抛物线C进行平移,使得平移后的抛物线C的顶点P落在直线l上,试探究S(l,C)是否为定值?若是,请求出该定值;若不是,请说明理由;(3)设抛物线C的函数表达式为ya(xh)2+k,若S(l,C)62,MN42,且点P在点Q的下方,求a的值27(2022南关区校级模拟
18、)在平面直角坐标系xOy中,对于点P给出如下定义:若点P到两坐标轴的距离之和等于3,则称点P为三好点(1)在点R(0,3),S(1,2),T(6,3)中,属于三好点的是 (填写字母即可);(2)若点A在x轴正半轴上,且点A为三好点,直线y2x+b经过点A,求该直线与坐标轴围成的三角形的面积;(3)若直线ya(a0)与抛物线yx2x2的交点为点M,N,其中点M为三好点,求点M的坐标;(4)若在抛物线yx2nx+2n上有且仅有两个点为三好点,直接写出n的取值范围28(2022秋长沙期中)定义:在平面直角坐标系中,图形G上的点P(x,y)的横坐标x和纵坐标y的和x+y称为点P的“横纵和”,而图形G上
19、所有点的“横纵和”中最小的值称为图形的“极小和”(1)抛物线yx22x2的图象上点P(1,3)的“横纵和”是 ;该抛物线的“极小和”是 (2)记抛物线yx2(2m+1)x2的“极小和”为s,若2021s2020,求m的取值范围(3)已知二次函数yx2+bx+c(c0)的图象上的点A(m2,2c)和点C(0,c)的“横纵和”相等,求该二次函数的“极小和”这个“极小和”是否有最大值?如果有,请求出这个最大值;如果没有,请说明理由29(2022泰兴市二模)定义:在平面直角坐标系xOy中,若P、Q的坐标分别为(x1,y1)、Q(x2,y2),则称|x1x2|+|y1y2|为若P、Q的“绝对距离”,表示
20、为dPQ【概念理解】(1)一次函数y2x+6图象与x轴、y轴分别交于A、B点dAB为 ;点N为一次函数y2x+6图象在第一象限内的一点,dAN5,求N的坐标;一次函数y=x+32的图象与y轴、AB分别交于C、D点,P为线段CD上的任意一点,试说明:dAPdBP【问题解决】(2)点P(1,2)、Q(a,b)为二次函数yx2mx+n图象上的点,且Q在P的右边,当b2时,dPQ4若b2,求dPQ的最大值;(3)已知P的坐标为(1,1),点Q为反比例函数y=3x(x0)图象上一点,且Q在P的右边,dPQ2,试说明满足条件的点Q有且只有一个30(2022开福区校级一模)定义:当x取任意实数,函数值始终不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年九年级数学下册举一反三系列专题5.7 二次函数中的新定义问题专项训练30道举一反三苏科版含解析 2022 2023 学年 九年级 数学 下册 举一反三 系列 专题 5.7
链接地址:https://www.taowenge.com/p-97112702.html
限制150内