2022-2023学年七年级数学上册举一反三系列专题7.3 期中期末专项复习之一元一次方程十六大必考点(举一反三)(苏科版)含解析.docx
《2022-2023学年七年级数学上册举一反三系列专题7.3 期中期末专项复习之一元一次方程十六大必考点(举一反三)(苏科版)含解析.docx》由会员分享,可在线阅读,更多相关《2022-2023学年七年级数学上册举一反三系列专题7.3 期中期末专项复习之一元一次方程十六大必考点(举一反三)(苏科版)含解析.docx(147页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022-2023学年七年级数学下册举一反三系列专题7.3一元一次方程十六大考点【苏科版】【考点1 方程、一元一次方程的概念】1【考点2 方程、一元一次方程的解】2【考点3 同解方程】2【考点4 根据方程的解情况求值】3【考点5 方程遮挡问题】3【考点6 判断方程解的情况】3【考点7 等式的基本性质】4【考点8 一元一次方程的解法】5【考点9 换元法、整体代入法解一元一次方程】5【考点10 一元一次方程中的错看问题】5【考点11 一元一次方程中的新定义问题】6【考点12 一元一次方程中的动点问题】6【考点13 绝对值方程】7【考点14 列一元一次方程并求解】8【考点15 一元一次方程的应用】8
2、【考点16 一元一次方程中的数形结合问题】9【考点1 方程、一元一次方程的概念】【例1】(2022湖南七年级单元测试)下列方程中,一元一次方程共有()个4x35x2;3x4y;3x11x;3x-14150;x23x10;x112A1个B2个C3个D4个【变式1-1】(2022福建省永春乌石中学七年级阶段练习)若方程2xa-2+a=5是关于x的一元一次方程,则这个方程的解是()A1B-1C3D-3【变式1-2】(2022山东泰安市泰山区大津口中学阶段练习)下列式子中:5x+3y=0,6x2-5x,3x0;当x=1.8时,y0则方程2x+513-3x-217-32x+2=0的解可能是()A1.45
3、B1.64C1.92D2.05【变式4-3】(2022内蒙古通辽七年级期末)若关于x的方程mx=3-x的解为整数,则正整数m的值为_【考点5 方程遮挡问题】【例5】(2022重庆黔江七年级期末)方程2y-12=12y-中被阴影盖住的是一个常数已知此方程的解是y=-43则这个常数是()A-52B52C-32D-32【变式5-1】(2022河南开封七年级期末)某书中一道方程题2+x3+1=x,处印刷时被墨盖住了,查后面答案,这道题的解为x=-25,那么处的数字为_【变式5-2】(2022全国七年级单元测试)小磊在解方程321-x3=x-13时,墨水把其中一个数字染成了“”,他翻阅了答案知道这个方程
4、的解为x=23,于是他推算确定被染了的数字“”应该是_【变式5-3】(2022浙江杭州中考真题)计算:-623-23圆圆在做作业时,发现题中有一个数字被墨水污染了(1)如果被污染的数字是12,请计算-623-12-23(2)如果计算结果等于6,求被污染的数字【考点6 判断方程解的情况】【例6】(2022江西抚州七年级期中)若a+b=0,则方程ax+b=0的解有()A只有一个解B只有一个解或无解C只有一个解或无数个解D无解【变式6-1】(2022春嵩县期中)当a1时,方程(a1)x+b0(其中x是未知数,b是已知数()A有且只有一个解B无解C有无限多个解D无解或有无限多个解【变式6-2】(202
5、2顺德区模拟)已知关于x的方程(a2)xb+3(1)若原方程只有一个解,则a,b(2)若原方程无解,则a,b(3)若原方程有无数多个解,则a,b【变式6-3】(2022全国七年级课时练习)若m、n是有理数,关于x的方程3m(2x1)n3(2n)x有至少两个不同的解,则另一个关于x的方程(m+n)x+34x+m的解的情况是()A有至少两个不同的解B有无限多个解C只有一个解D无解【考点7 等式的基本性质】【例7】(2022辽宁葫芦岛市实验中学七年级阶段练习)下列各式运用等式的性质变形,错误的是()A若-a=-b,则a=bB若ac=bc,则a=bC若ac=bc,则a=bD若(m2+1)a=(m2+1
6、)b,则a=b【变式7-1】(2022河南西峡县城区二中七年级阶段练习)a、b、c为有理数,下列变形不正确的是()A如果a=b,那么a+2=b+2;B如果a=b,那么2-a=2-b;C如果a=b,那么ac=bc;D如果a=b,那么ac=bc【变式7-2】(2022河南南阳市宛城区官庄镇第一初级中学七年级阶段练习)如图是方程1-3x-14=3+x2的求解过程,其中依据等式的基本性质的步骤有()ABCD【变式7-3】(2022广东广州七年级期末)四个数w、x、y、z满足x2021y+2022z2023w+2024,那么其中最小的数是_,最大的数是_【考点8 一元一次方程的解法】【例8】(2022江
7、苏南通第一初中七年级阶段练习)解方程:(1)0.5x-0.7=6.5-1.3x;(2)5(x+6)=6(2x-7)+9;(3)1-2x-56=3-x4;(4)x-10.2=1+x-10.5【变式8-1】(2022上海市罗南中学阶段练习)解方程:14%x9%(x+10)7%x0.2【变式8-2】(2022湖南邵阳市第十六中学七年级期末)解下列方程:(1)2x-2=12x+1(2)1-2x+15=x+310【考点9 换元法、整体代入法解一元一次方程】【例9】(2022江苏南通市八一中学七年级阶段练习)已知关于x的一元一次方程x2019+5=2019x+m的解为x=2018,那么关于y的一元一次方程
8、5-y2019-5=2019(5-y)-m的解为()A2013B-2013C2023D-2023【变式9-1】(2022江苏南通第一初中七年级阶段练习)当x1时,式子ax3+bx+1的值是2,则方程ax+12+2bx-34=x4的解是 _【变式9-2】(2022山东德州七年级阶段练习)用整体思想解方程3(2x3)- 13(32x)=5(32x)+12(2x3)【变式9-3】(2022浙江杭州七年级期末)已知关于x的一元一次方程12016x+3=2x+b的解为x=5,那么关于y的一元一次方程12016(y+1)+3=2(y+1)+b的解为_【考点10 一元一次方程中的错看问题】【例10】(202
9、2全国七年级专题练习)某同学解方程4x-3=x+1时,把“”处的系数看错了,解得x=4,他把“”处的系数看成了()A3B-3C4D-4【变式10-1】(2022四川威远县凤翔中学七年级期中)小李在解方程3a-x=13(x为未知数)时,误将-x看作+x,解得方程的解x=-2,则a_,原方程的解为_【变式10-2】(2023河北九年级专题练习)已知关于x的方程2x-13=x-a2-1的解为x=-10,则a的值为_;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为x=_【变式10-3】(2022山东枣庄东方国际学校七年级阶段练习)嘉淇解方程2x-65+1x+a2时,由于粗心大意,在
10、去分母时,方程左边的1没有乘以10,由此得到方程的解为x1(1)试求a的值;(2)求原方程的解【考点11 一元一次方程中的新定义问题】【例11】(2022全国七年级专题练习)对于两个不相等的有理数a,b,我们规定符号mina,b表示a、b两数中较小的数,例如min2,-4-4,则方程minx,-x3x4的解为()Ax1Bx2Cx1或x2Dx1或x2【变式11-1】(2022江苏苏州市相城区阳澄湖中学七年级阶段练习)已知,对于任意的有理数a、b、c、d,我们规定了一种运算:|abcd|adbc,例如|102-2|1(2)022,那么当|2x+1-4x-13|19时,求x的值【考点12 一元一次方
11、程中的动点问题】【变式12-1】(2022全国七年级专题练习)如图,在ABC中,BC=26cm,射线AGBC,动点E从点A出发沿射线的AG方向以每秒2cm的速度运动,点E出发1秒后,动点F从点B出发在线段BC上以每秒4cm的速度向点C运动当点F运动到点C时,点E随之停止运动连接AF,CE设点E的运动时间为t(秒),当AEC的面积等于AFC的面积时,t的值为_(秒)【变式12-2】(2022全国七年级专题练习)如图,在长方形ABCD中,AB4cm,BC3cm,E为CD的中点,动点P从A点出发,以每秒1cm的速度沿ABCE运动,最终到达点E若点P运动的时间为x秒,则当APE的面积为5cm2时,x的
12、值为_ 【变式12-3】(2022上海理工大学附属初级中学期中)已知:ABC中,BC=a,AC=b,AB=c,a是最小的合数,b、c满足等式:b-5+c-62=0,点P是ABC的边上一动点,点P从点B开始沿着ABC的边按BAACCB顺序顺时针移动一周,回到点B后停止,移动的路径为S,移动的速度为每秒3个单位长度如图1所示(1)试求出ABC的周长;(2)当点P移动到AC边上时,化简:S-4+3S-6+4S-45;(3)如图2所示,若点Q是ABC边上一动点,P、Q两点分别从B、C同时出发,即当点P开始移动的时候,点Q从点C开始沿着ABC的边顺时针移动,移动的速度为每秒5个单位,试问:当t为何值时,
13、P, Q两点的路径(在三角形边上的距离)相差3?此时点P在ABC哪条边上?【考点13 绝对值方程】【例13】(2022四川安岳县九韶初级中学七年级阶段练习)方程x-k=12的解是x=2,那么k=_【变式13-1】(2022全国七年级专题练习)已知方程(m+1)x|m|-8=0是关于x的一元一次方程(1)求代数式5x2-2(xm+2x2)-(xm+6)的值;(2)求关于y的方程m|y2|x的解【变式13-2】(2022江苏南通市新桥中学七年级阶段练习)有些含绝对值的方程,可以通过讨论去掉绝对值号,转化为一元一次方程求解例如:解方程x+2|x|3解:当x0时,原方程可化为x+2x3,解得x1,符合
14、题意;当x0时,原方程可化为x-2x3,解得x-3,符合题意所以,原方程的解为x1或x-3仿照上面的解法,解方程x-43 - 8x+22【变式13-3】(2022全国七年级专题练习)有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解例如:解方程x+2|x|=3,解:当x0时,方程可化为:x+2x=3,解得x=1,符合题意;当x0时,方程可化为:x-2x=3,解得x=-3,符合题意所以,原方程的解为x=1或x=-3请根据上述解法,完成以下两个问题:(1)解方程:x+2|x-1|=3;(2)试说明关于x的方程|x+3|+|x-1|=a解的情况【考点14 列一元一次方程并求解】【例1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年七年级数学上册举一反三系列专题7.3 期中期末专项复习之一元一次方程十六大必考点举一反三苏科版含解析 2022 2023 学年 七年 级数 上册 举一反三 系列 专题 7.3
链接地址:https://www.taowenge.com/p-97112813.html
限制150内