【数学】正态分布练习-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册.docx
《【数学】正态分布练习-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册.docx》由会员分享,可在线阅读,更多相关《【数学】正态分布练习-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正态分布练习1某物理量的测量结果服从正态分布,下列结论中不正确的是()A越小,该物理量在一次测量中在的概率越大B该物理量在一次测量中大于10的概率为0.5C该物理量在一次测量中小于9.99与大于10.01的概率相等D该物理量在一次测量中落在与落在的概率相等2已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量服从正态分布 ,则 ,)A4.56%B13.59%C27.18%D31.74%3设两个正态分布和的密度函数图像如图所示则有A BC D4设,这两个正态分布密度曲线如图所示下列结论中正确的是()A BC对任意正数,D对任意正
2、数,5高考是全国性统一考试,因考生体量很大,故高考成绩近似服从正态分布一般正态分布可以转化为标准正态分布,即若,令,则,且已知选考物理考生总分的全省平均分为460分,该次考试的标准差为40,现从选考物理的考生中随机抽取30名考生成绩作进一步调研,记为这30名考生分数超过520分的人数,则()参考数据:若,则,A0.8743B0.1257C0.9332D0.06686以表示标准正态总体在区间内取值的概率,若随机变量服从正态分布,则概率等于A B CD7(多选)18世纪30年代,数学家棣莫弗发现,如果随机变量X服从二项分布,那么当n比较大时,可视为X服从正态分布,其密度函数,.任意正态分布,可通过
3、变换转化为标准正态分布(且).当时,对任意实数x,记,则()A B当时,C随机变量,当减小,增大时,概率保持不变D随机变量,当,都增大时,概率单调增大8某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 9已知随机变量X服从正态分布,且,则 10从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中
4、点值作代表);(II)由直方图可以认为,这种产品的质量指标服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间的产品件数.利用(i)的结果,求.附:若则,11冬奥会的成功举办极大鼓舞了人们体育强国的热情,掀起了青少年锻炼身体的热潮.某校为了解全校学生“体能达标”的情况,从高三年级1000名学生中随机选出40名学生参加“体能达标”测试,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为合格.若高三年级“不合格”的人数不超过总人数的5%,则该年级体能达标为“合格”;否则该年级体
5、能达标为“不合格”,需要重新对高三年级学生加强训练.现将这40名学生随机分成甲、乙两个组,其中甲组有24名学生,乙组有16名学生.经过预测后,两组各自将预测成绩统计分析如下:甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6.(数据的最后结果都精确到整数)(1)求这40名学生测试成绩的平均分和标准差s;(2)假设高三学生的体能达标预测成绩服从正态分布N(,),用样本平均数作为的估计值,用样本标准差s作为的估计值.利用估计值估计,高三学生体能达标预测是否“合格”;(3)为增强趣味性,在体能达标的跳绳测试项目中,同学们可以向体育特长班的强手发起挑战.每场挑战赛都采取七局四胜制.积分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 正态分布 练习 2023 2024 学年 下学 期数 学人 2019 选择性 必修 第三
链接地址:https://www.taowenge.com/p-97201284.html
限制150内