《2023年四川省遂宁市中考数学试卷.doc》由会员分享,可在线阅读,更多相关《2023年四川省遂宁市中考数学试卷.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年四川省遂宁市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分在每个小题给出的四个选项中,只有一项是符合题目要求的)1(4分)已知算式5(5)的值为0,则“”内应填入的运算符号为()A+BCD2(4分)下列运算正确的是()A(a)2a2B3a2a23Ca3aa4D(a1)2a213(4分)纳米是表示微小距离的单位,1纳米0.000001毫米,而1毫米相当于我们通常使用的刻度尺上的一小格,可想而知1纳米是多么的小中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管一一直径0.5纳米0.5纳米相当于0.0000005毫米,数据0.0000005用科学记数法可以表示
2、为()A0.5106B0.5107C5106D51074(4分)生活中一些常见的物体可以抽象成立体图形,以下立体图形中三视图形状相同的可能是()A正方体B圆锥C圆柱D四棱锥5(4分)九章算术是我国古代数学的经典著作,书中记载了这样一个题目:今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金,银各重几何?其大意是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),两袋重量相等,两袋互换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金,白银各重几两?设每枚黄金重x两,每枚白银重y两,根据题意得方程组()ABCD6(4分)在方格图中,以格点为顶
3、点的三角形叫做格点三角形在如图所示的平面直角坐标系中,格点ABC、DEF成位似关系,则位似中心的坐标为()A(1,0)B(0,0)C(0,1)D(1,0)7(4分)为增强班级凝聚力,吴老师组织开展了一次主题班会班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()ABCD8(4分)若关于x的不等式组的解集为x3,则a的取值范围是()Aa3Ba3Ca3Da39(4分)如图,在ABC中,AB10,B
4、C6,AC8,点P为线段AB上的动点以每秒1个单位长度的速度从点A向点B移动,到达点B时停止过点P作PMAC于点M作PNBC于点N,连结MN,线段MN的长度y与点P的运动时间t(秒)的函数关系如图所示,则函数图象最低点E的坐标为()A(5,5)B(6,)C(,)D(,5)10(4分)抛物线yax2+bx+c(a0)的图象如图所示,对称轴为直线x2下列说法:abc0;c3a0;4a22abat(at+b)(t为全体实数);若图象上存在点A(x1,y1)和点B(x2,y2),当mx1x2m+3时,满足y1y2,则m的取值范围为5m2,其中正确的个数有()A1个B2个C3个D4个二、填空题(本大题共
5、5个小题,每小题4分,共20分)11(4分)若三角形三个内角的比为1:2:3,则这个三角形是 三角形12(4分)若a、b是一元二次方程x23x+10的两个实数根,则代数式a+bab的值为 13(4分)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护通常用碳原子的个数命名为甲烷、乙烷、丙烷、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷)等,甲烷的化学式为CH4,乙烷的化学式为C2H6,丙烷的化学式为C3H8,其分子结构模型如图所示,按照此规律,十二烷的化学式为 14(4分)如图,ABCD中,BD为对角线,分别以点A、B为圆心
6、,以大于AB的长为半径画弧,两弧相交于点M、N,作直线MN交AD于点E,交AB于点F,若ADBD,BD4,BC8,则AE的长为 15(4分)如图,以ABC的边AB、AC为腰分别向外作等腰直角ABE、ACD,连结ED、BD、EC,过点A的直线l分别交线段DE、BC于点M、N以下说法:当ABACBC时,AED30;ECBD;若AB3,AC4,BC6,则DE2;当直线lBC时,点M为线段DE的中点正确的有 (填序号)三、解答题(本大题共10个小题,共90分解答应写出必要的文字说明、证明过程或演算步骤)16(7分)计算:2sin30+(2)0+(1)202317(7分)先化简,再求值:(1+),其中x
7、()118(8分)为贯彻落实党的二十大关于深化全民阅读活动的重要部署,教育部印发了全国青少年学生读书行动实施方案,于是某中学开展了以“书香润校园,好书伴成长”为主题的系列读书活动学校为了解学生周末的阅读情况,采用随机抽样的方式获取了若干名学生的周末阅读时间数据,整理后得到下列不完整的图表:类别A类B类C类D类阅读时长t(小时)0t11t22t3t3频数8mn4请根据图表中提供的信息解答下面的问题:(1)此次调查共抽取了 名学生,m ,n ;(2)扇形统计图中,B类所对应的扇形的圆心角是 度;(3)已知在D类的4名学生中有两名男生和两名女生,若从中随机抽取两人参加阅读分享活动,请用列表或画树状图
8、的方法求出恰好抽到一名男生和一名女生的概率19(9分)如图,四边形ABCD中,ADBC,点O为对角线BD的中点,过点O的直线l分别与AD、BC所在的直线相交于点E、F(点E不与点D重合)(1)求证:DOEBOF;(2)当直线lBD时,连结BE、DF,试判断四边形EBFD的形状,并说明理由20(9分)我们规定:对于任意实数a、b、c、d有a,b*c,dacbd,其中等式右边是通常的乘法和减法运算,如:3,2*5,1352113(1)求4,3*2,6的值;(2)已知关于x的方程x,2x1*mx+1,m0有两个实数根,求m的取值范围21(9分)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽
9、子是中华民族的传统习俗某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售经了解,每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同(1)甲、乙两种粽子每个的进价分别是多少元?(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为W元求W与m的函数关系式,并求出m的取值范围;超市应如何进货才能获得最大利润,最大利润是多少元?22(9分)某实践探究小组想测得湖边两处的距离,数据
10、勘测组通过勘测,得到了如下记录表:实践探究活动记录表活动内容测量湖边A、B两处的距离成员组长:组员:工具测角仪,皮尺等测量示意图说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C,可测量C处到A、B两处的距离,通过测角仪可测得A、B、C的度数测量数据角的度数A30B45C105边的长度BC40.0米AC56.4米数据处理组得到上面数据以后做了认真分析,他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离于是数据处理组写出了以下过程,请补全内容已知:如图,在ABC中,A30,B45, (从记录表中再选一个条件填入横线)求:线段AB的长(为减小结果的误差,若有需要,取
11、1.41,取1.73,取2.45进行计算,最后结果保留整数)23(10分)如图,一次函数yk1x+b的图象与反比例函数y的图象交于A(4,1),B(m,4)两点(k1,k2,b为常数)(1)求一次函数和反比例函数的解析式;(2)根据图象直接写出不等式k1x+b的解集;(3)P为y轴上一点,若PAB的面积为3,求P点的坐标24(10分)如图,四边形ABCD内接于O,AB为O的直径,ADCD,过点D的直线l交BA的延长线于点M交BC的延长线于点N且ADMDAC(1)求证:MN是O的切线;(2)求证:AD2ABCN;(3)当AB6,sinDCA时,求AM的长25(12分)在平面直角坐标系中,O为坐标
12、原点,抛物线yx2+bx+c经过点O(0,0),对称轴过点B(2,0),直线l过点C(2,2)且垂直于y轴过点B的直线l1交抛物线于点M、N,交直线l于点Q,其中点M、Q在抛物线对称轴的左侧(1)求抛物线的解析式;(2)如图1,当BM:MQ3:5时,求点N的坐标;(3)如图2,当点Q恰好在y轴上时,P为直线l1下方的抛物线上一动点,连结PQ、PO,其中PO交l1于点E,设OQE的面积为S1,PQE的面积为S2,求的最大值2023年四川省遂宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分在每个小题给出的四个选项中,只有一项是符合题目要求的)1(4分)已知算式
13、5(5)的值为0,则“”内应填入的运算符号为()A+BCD【分析】分别代入“+”、“”、“”、“”符号进行计算即可【解答】解:A、5+(5)0,符合题意;B、5(5)10,不符合题意;C、5(5)25,不符合题意;D、5(5)1,不符合题意故选:A【点评】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的加、减、乘、除运算法则2(4分)下列运算正确的是()A(a)2a2B3a2a23Ca3aa4D(a1)2a21【分析】利用完全平方公式,合并同类项的法则,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可【解答】解:A、(a)2a2,故A不符合题意;B、3a2a22a2,故B不符合题
14、意;C、a3aa4,故C符合题意;D、(a1)2a22a+1,故D不符合题意;故选:C【点评】本题主要考查完全平方公式,合并同类项,积的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握3(4分)纳米是表示微小距离的单位,1纳米0.000001毫米,而1毫米相当于我们通常使用的刻度尺上的一小格,可想而知1纳米是多么的小中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管一一直径0.5纳米0.5纳米相当于0.0000005毫米,数据0.0000005用科学记数法可以表示为()A0.5106B0.5107C5106D5107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形
15、式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:将0.0000005用科学记数法表示为5107故选:D【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4(4分)生活中一些常见的物体可以抽象成立体图形,以下立体图形中三视图形状相同的可能是()A正方体B圆锥C圆柱D四棱锥【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到主视图、左视图和俯视图形状都相同的图形即可【解答】解:A、该正方体的三视图都是
16、正方形,符合题意;B、该圆锥的三视图分别为三角形,三角形,圆及圆心,不符合题意;C、该圆柱的主视图和左视图都是矩形,俯视图是圆,不符合题意;D、该四棱锥的主视图和左视图是三角形,俯视图是画有对角线的矩形,不符合题意故选:A【点评】本题考查了几何体的三种视图,掌握定义是关键注意所有的看到的轮廓线都应表现在三视图中5(4分)九章算术是我国古代数学的经典著作,书中记载了这样一个题目:今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金,银各重几何?其大意是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),两袋重量相等,两袋互换一枚后,甲袋比乙袋轻了13
17、两(袋子重量忽略不计),问黄金,白银各重几两?设每枚黄金重x两,每枚白银重y两,根据题意得方程组()ABCD【分析】根据“乙袋中装有白银11枚(每枚白银重量相同),两袋重量相等,两袋互换一枚后,甲袋比乙袋轻了13两”,即可得出关于x,y的二元一次方程组,此题得解【解答】解:依题意,得故选:D【点评】本题考查了数学常识,由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键6(4分)在方格图中,以格点为顶点的三角形叫做格点三角形在如图所示的平面直角坐标系中,格点ABC、DEF成位似关系,则位似中心的坐标为()A(1,0)B(0,0)C(0,1)D(1,0)【分析】根据位
18、似中心的定义作答【解答】解:如图:ABC与DEF的对应顶点的连线相交于点(1,0),则位似中心的坐标为(1,0)故选:A【点评】本题主要考查了位似变换,坐标与图形性质,解题的关键是掌握“位似中心”的确定方法7(4分)为增强班级凝聚力,吴老师组织开展了一次主题班会班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()ABCD【分析】根据“免一次作业”部分的面积占大圆的比例得出结论即可【解答】解:投
19、中“免一次作业”的概率是,故选:B【点评】本题主要考查几何概率的知识,熟练掌握几何面积比例和概率的关系是解题的关键8(4分)若关于x的不等式组的解集为x3,则a的取值范围是()Aa3Ba3Ca3Da3【分析】用含a的式子表示出不等式的解,结合条件进行求解即可【解答】解:,解不等式得:x3,解不等式得:xa,不等式组的解集是x3,a3故选:D【点评】本题主要考查解一元一次不等式组,解答的关键是明确“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则9(4分)如图,在ABC中,AB10,BC6,AC8,点P为线段AB上的动点以每秒1个单位长度的速度从点A向点B移动,到达点B时停止过点P作P
20、MAC于点M作PNBC于点N,连结MN,线段MN的长度y与点P的运动时间t(秒)的函数关系如图所示,则函数图象最低点E的坐标为()A(5,5)B(6,)C(,)D(,5)【分析】根据矩形的性质和直角三角形的性质,可以得到CPAB时,CP取得最小值,此时MN取得最小值,然后即可求得点E的坐标【解答】解:连接CP,AB10,BC6,AC8,AC2+BC282+62102AB2,ABC是直角三角形,ACB90,PMAC,PNBC,PMCPNC90,PMCPNCACB90,四边形CMPN是矩形,MNCP,当CPAB时,CP取得最小值,此时CP,AP,函数图象最低点E的坐标为(,),故选:C【点评】本题
21、考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答10(4分)抛物线yax2+bx+c(a0)的图象如图所示,对称轴为直线x2下列说法:abc0;c3a0;4a22abat(at+b)(t为全体实数);若图象上存在点A(x1,y1)和点B(x2,y2),当mx1x2m+3时,满足y1y2,则m的取值范围为5m2,其中正确的个数有()A1个B2个C3个D4个【分析】分别判断a、b、c的符号,再判断abc的符号;由对称轴为直线x2,可知a与b的数量关系,消去b可得仅含a、c的解析式,找特定点可判断c3a的符号用a与b的数量关系,可将原式化简得到关于t的不等式,再用函数的性质(
22、t为全体实数)判断利用二次函数的性质及二次函数与一元二次方程的关系即可判断【解答】解:因图象开口向下,可知:a0;又对称轴为直线x2,2,整理得:b4a,即a、b同号由图象可知,当x4时,y0,又对称轴为直线x2,可知:当x0时,y0;即c0;abc0,故正确由得:b4a代入原解析式得:yax2+4ax+c;由图象可知,当x1时,y0即:a(1)2+4a(1)+c0,整理得:c3a0,故正确设4a22abat(at+b)则4a2battbt,两边+c得到4a2b+cattbt+c,左侧为x2时的函数值,右侧为xt时的函数值,显然不成立,故错误由题意得,x1、x2是一元二次方程ax2+bx+cy
23、10的两个根,从图象上看,因二次函数有对称性,x1、x2关于x2对称,当且仅当m2m+3时,存在点A(x1,y1)和点B(x2,y2),当mx1x2m+3时,满足y1y2,即当5m2时,满足题设,故正确故本题选:C【点评】本题考查了二次函数字母系数与图象的关系、二次函数与一元二次方程的关系等知识需综合利用二次函数的性质,不等式的性质解题二、填空题(本大题共5个小题,每小题4分,共20分)11(4分)若三角形三个内角的比为1:2:3,则这个三角形是 直角三角形【分析】设这个三角形最小的内角是x,则另外两内角的度数分别为2x,3x,利用三角形内角和是180,可得出关于x的一元一次方程,解之可求出x
24、的值,再将其代入3x中即可得出结论【解答】解:设这个三角形最小的内角是x,则另外两内角的度数分别为2x,3x,根据题意得:x+2x+3x180,解得:x30,3x33090,这个三角形是直角三角形故答案为:直角【点评】本题考查了三角形内角和定理以及解一元一次方程,牢记“三角形内角和是180”是解题的关键12(4分)若a、b是一元二次方程x23x+10的两个实数根,则代数式a+bab的值为 2【分析】根据根与系数的关系得到a+b3,ab1,然后利用整体代入的方法计算【解答】解:a、b是一元二次方程x23x+10的两个实数根,a+b3,ab1,a+bab312故答案为:2【点评】本题考查了根与系数
25、的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根,则x1+x2,x1x213(4分)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护通常用碳原子的个数命名为甲烷、乙烷、丙烷、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷)等,甲烷的化学式为CH4,乙烷的化学式为C2H6,丙烷的化学式为C3H8,其分子结构模型如图所示,按照此规律,十二烷的化学式为 C12H26【分析】根据图形,可以写出C和H的个数,然后即可发现C和H的变化特点,从而可以写出十二烷的化学式【解答】解:由图可得,甲烷的化学式中的C有1个,H有2
26、+214(个),乙烷的化学式中的C有2个,H有2+226(个),丙烷的化学式中的C有3个,H有2+238(个),十二烷的化学式中的C有12个,H有2+21226(个),即十二烷的化学式为C12H26,故答案为:C12H26【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现C和H的变化特点14(4分)如图,ABCD中,BD为对角线,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧相交于点M、N,作直线MN交AD于点E,交AB于点F,若ADBD,BD4,BC8,则AE的长为 5【分析】根据平行四边形 性质得到ADBC8,根据垂直的定义得到ADB90,由作图知,MN垂直平分AB,求得A
27、FAB2,EFAB,根据相似三角形的判定和性质定理即可得到结论【解答】解:四边形ABCD是平行四边形,ADBC8,ADBD,ADB90,4,由作图知,MN垂直平分AB,AFAB2,EFAB,AFEADB90,AA,AEFABD,AE5故答案为:5【点评】本题考查了作图基本作图,线段垂直平分线的性质,平行四边形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键15(4分)如图,以ABC的边AB、AC为腰分别向外作等腰直角ABE、ACD,连结ED、BD、EC,过点A的直线l分别交线段DE、BC于点M、N以下说法:当ABACBC时,AED30;ECBD;若AB3,AC4,
28、BC6,则DE2;当直线lBC时,点M为线段DE的中点正确的有 (填序号)【分析】由ABACBC,得BAC60,因为AEAB,ACAD,BAECAD90,所以AEAD,EAD120,则AEDADE30,可判断正确;由CADBAE90,推导出CAEDAB,可证明CAEDAB,得ECBD,可判断正确;设BD交AE于点G,交CE于点O,可证明EOB90,则CODBOCDOE90,可根据勾股定理推导出DE2+BC2BE2+CD2,可求得BE2AB2+AE218,CD2AD2+AC232,BC236,则DE2,可判断错误;当直线lBC时,作EFAD交直线l于点F,连接DF,可证明EAFABC,则EFAC
29、AD,所以四边形ADFE是平行四边形,则M为线段DE的中点,可判断正确,于是得到问题的答案【解答】解:ABACBC,BAC60,AEAB,ACAD,BAECAD90,AEAD,EAD360609090120,AEDADE(180120)30,故正确;CADBAE90,CAEDAB90+DAE,CAEDAB(SAS),ECBD,故正确;如图1,设BD交AE于点G,交CE于点O,AECABD,OGEAGB,AEC+OGEABD+AGB90,EOB90,CODBOCDOE90,DE2+BC2OD2+OE2+OB2+OC2BE2+CD2,AEAB3,ADAC4,BC6,BE2AB2+AE232+321
30、8,CD2AD2+AC242+4232,BC26236,DE2,故错误;当直线lBC时,如图2,作EFAD交直线l于点F,连接DF,AEF+DAE180,BAC+DAE180,AEFBAC,ANBBAE90,EAFABC90BAN,EAAB,EAFABC(ASA),EFACAD,四边形ADFE是平行四边形,M为线段DE的中点,故正确,故答案为:【点评】此题重点考查等腰直角三角形的性质、等边三角形的性质、全等三角形的判定与性质、等角的余角相等、等角的补角相等、平行四边形的判定与性质等知识,正确地作出所需要的辅助线是解题的关键三、解答题(本大题共10个小题,共90分解答应写出必要的文字说明、证明过
31、程或演算步骤)16(7分)计算:2sin30+(2)0+(1)2023【分析】第一项用特殊角的三角函数值计算,第二项根据立方根的定义计算,第三项根据零指数幂运算法则计算,第四项根据有理数的乘方法则计算,从而得出计算结果【解答】解:12+111【点评】本题考查了实数的运算,熟练掌握实数的运算法则是解题的关键17(7分)先化简,再求值:(1+),其中x()1【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可【解答】解:原式1,x()12,原式1【点评】本题考查的是分式的化简求值及负整数指数幂,熟知分式混合运算的法则是解题的关键18(8分)为贯彻落实党的二十大关于深化全民阅
32、读活动的重要部署,教育部印发了全国青少年学生读书行动实施方案,于是某中学开展了以“书香润校园,好书伴成长”为主题的系列读书活动学校为了解学生周末的阅读情况,采用随机抽样的方式获取了若干名学生的周末阅读时间数据,整理后得到下列不完整的图表:类别A类B类C类D类阅读时长t(小时)0t11t22t3t3频数8mn4请根据图表中提供的信息解答下面的问题:(1)此次调查共抽取了 40名学生,m18,n10;(2)扇形统计图中,B类所对应的扇形的圆心角是 162度;(3)已知在D类的4名学生中有两名男生和两名女生,若从中随机抽取两人参加阅读分享活动,请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的
33、概率【分析】(1)由A类的学生人数除以所占百分比得出此次调查共抽取的学生人数,即可解决问题;(2)由360乘以B类所占的比例即可;(3)画树状图,共有12种等可能的结果,其中恰好抽到一名男生和一名女生的结果有8种,再由概率公式求解即可【解答】解:(1)此次调查共抽取的学生人数为:820%40(名),n4025%10,m40810418,故答案为:40,18,10;(2)扇形统计图中,B类所对应的扇形的圆心角是360162,故答案为:162;(3)画树状图如下:共有12种等可能的结果,其中恰好抽到一名男生和一名女生的结果有8种,恰好抽到一名男生和一名女生的概率为【点评】此题考查的是用树状图法求概
34、率以及频数分布表和扇形统计图等知识树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比19(9分)如图,四边形ABCD中,ADBC,点O为对角线BD的中点,过点O的直线l分别与AD、BC所在的直线相交于点E、F(点E不与点D重合)(1)求证:DOEBOF;(2)当直线lBD时,连结BE、DF,试判断四边形EBFD的形状,并说明理由【分析】(1)由ADBC,得ODEOBF,而ODOB,DOEBOF,即可根据全等三角形的判定定理“ASA”证明DOEBOF;(2)由ODOB,直线l经过点O且lBD,得DEBE,DFBF,由DOEBO
35、F,得DEBF,则DEBEDFBF,所以四边形EBFD是菱形【解答】(1)证明:ADBC,ODEOBF,点O为对角线BD的中点,ODOB,在DOE和BOF中,DOEBOF(ASA)(2)解:四边形EBFD是菱形,理由如下:ODOB,直线l经过点O且lBD,直线l是线段BD的垂直平分线,DEBE,DFBF,DOEBOF,DEBF,DEBEDFBF,四边形EBFD是菱形【点评】此题重点考查平行线的性质、全等三角形的判定与性质、线段的垂直平分线的性质、菱形的判定等知识,证明ODEOBF及直线l垂直平分线段BD是解题的关键20(9分)我们规定:对于任意实数a、b、c、d有a,b*c,dacbd,其中等
36、式右边是通常的乘法和减法运算,如:3,2*5,1352113(1)求4,3*2,6的值;(2)已知关于x的方程x,2x1*mx+1,m0有两个实数根,求m的取值范围【分析】(1)用新定义运算法则列式计算;(1)先根据新定义得到x(mx+1)m(2x1)0,再把方程化为一般式,接着根据题意得到(12m)24mm0且m0,解不等式即可【解答】解:(1)4,3*2,6423(6)10;(2)根据题意得x(mx+1)m(2x1)0,整理得mx2+(12m)x+m0,关于x的方程x,2x1*mx+1,m0有两个实数根,(12m)24mm0且m0,解得m且m0【点评】本题属于新定义题型,考查一元二次方程根
37、的判别式,解一元一次不等式,根据题意得到关于m的不等式是解题的关键21(9分)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售经了解,每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同(1)甲、乙两种粽子每个的进价分别是多少元?(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为W元求W与m的
38、函数关系式,并求出m的取值范围;超市应如何进货才能获得最大利润,最大利润是多少元?【分析】(1)设每个甲种粽子的进价为x元,则每个乙种粽子的进价为(x+2)元,根据用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同,列出方程,解方程即可,注意验根;(2)设购进甲种粽子m个,则购进乙种粽子(200m)个,全部售完获得利润为w元,根据总利润甲、乙两种粽子利润之和列出函数解析式;根据甲种粽子的个数不低于乙种粽子个数的2倍求出m的取值范围,再根据函数的性质求最值,并求出相应的方案【解答】解:(1)设每个甲种粽子的进价为x元,则每个乙种粽子的进价为(x+2)元,根据题意得:,解得x10,
39、经检验,x10是原方程的根,此时x+212,答:每个甲种粽子的进价为10元,每个乙种粽子的进价为12元;(2)设购进甲种粽子m个,则购进乙种粽子(200m)个,根据题意得:W(1210)m+(1512)(200m)2m+6003mm+600,W与m的函数关系式为Wm+600;甲种粽子的个数不低于乙种粽子个数的2倍,m2(200m),解得m,m200(m为正整数);由知,Wm+600,10,m为正整数,当m134时,W有最大值,最大值为466,此时20013466,购进甲种粽子134个,乙种粽子66个时利润最大,最大利润为466元【点评】本题考查一次函数和分式方程的应用以及一元一次不等式的应用,
40、关键是找到等量关系列出函数解析式和分式方程22(9分)某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到了如下记录表:实践探究活动记录表活动内容测量湖边A、B两处的距离成员组长:组员:工具测角仪,皮尺等测量示意图说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C,可测量C处到A、B两处的距离,通过测角仪可测得A、B、C的度数测量数据角的度数A30B45C105边的长度BC40.0米AC56.4米数据处理组得到上面数据以后做了认真分析,他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离于是数据处理组写出了以下过程,请补全内容已知:如图,在ABC中,A30
41、,B45,BC40.0米(答案不唯一)(从记录表中再选一个条件填入横线)求:线段AB的长(为减小结果的误差,若有需要,取1.41,取1.73,取2.45进行计算,最后结果保留整数)【分析】若选择的条件是:BC40.0米,过点C作CDAB,垂足为D,先在RtBCD中,利用锐角三角函数的定义求出BD,CD的长,然后在RtADC中,利用含30度角的直角三角形的性质求出AD的长,从而利用线段的和差关系进行计算,即可解答;若选择的条件是:AC56.4米,过点C作CDAB,垂足为D,在RtADC中,利用含30度角的直角三角形的性质求出AD和CD的长,然后在RtBCD中,利用锐角三角函数的定义求出BD的长,从而利用线段的和差关系进行计算,即可解答【解答】解:若选择的条件是:BC40.0米,过点C作CDAB,垂足为D,在RtBCD中,B45,BC40米,BDBCcos454020(米),CDBCsin454020(米),在RtADC中,A30,ADCD20(米),ABAD+BD20+2077(米),线段AB的长约为77米;若选择的条件是:AC56.4
限制150内