2024年中考数学冲刺:代数综合问题--巩固练习(基础) .doc
《2024年中考数学冲刺:代数综合问题--巩固练习(基础) .doc》由会员分享,可在线阅读,更多相关《2024年中考数学冲刺:代数综合问题--巩固练习(基础) .doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2024年中考数学冲刺:代数综合问题巩固练习(基础)【巩固练习】一、选择题1. 如图所示,已知函数和ykx(k0)的图象交于点P,则根据图象可得,关于的二元一次方程组的解是( )A B C D2.(2016河北模拟)如图,点A是x轴正半轴上的任意一点,过点A作EFy轴,分别交反比例函数和的图象于点E、F,且,连接OE、OF,有下列结论:这两个函数的图象关于x轴对称;EOF的面积为(k1k2);当EOF=90时,其中正确的是()A B C D3下列说法中若式子有意义,则x1.已知=27,则的补角是153.已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.在反比例函数中,若x0
2、时,y 随x 的增大而增大,则k 的取值范围是k2. 其中正确的命题有( )A. 1 个 B. 2 个 C. 3 个 D. 4 个二、填空题4如图所示,是二次函数(a0)和一次函数(n0)的图象,观察图象写出y2y1时,x的取值范围_ _ 5已知二次函数若此函数图象的顶点在直线y-4上,则此函数解析式为 6. (2016历下区二模)已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论:abc0;4a+2b+c0;b24ac0;ba+c;a+2b+c0,其中正确的结论有 三、解答题7(北京校级期中)已知关于x的一元二次方程mx2(m+1)x+1=0(1)求证:此方程总有两个实数根;(2
3、)若此方程的两个实数根都是整数,求m的整数值;(3)在(2)中开口向上的抛物线y=mx2(m+1)x+1与x轴交于点A,与y轴交于点B,直线y=x上有一个动点P求使PA+PB取得最小值时的点P的坐标,并求PA+PB的最小值8. 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好某一天小迪有20分钟时间可用于学习假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间 (1)求小迪解题的学习收益量y与用于解题的时间x之间
4、的函数关系式; (2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?9. 已知P()和Q(1,)是抛物线上的两点(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值10. 已知:关于x的一元二次方程,其中(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且ADBD=10,求抛物线的解析式;
5、(3)已知点E(a,)、F(2a,y)、G(3a,y)都在(2)中的抛物线上,是否存在含有、y、y,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由【答案与解析】一、选择题1.【答案】C;【解析】本题考查方程组的解(数)与直线交点(形)坐标之间的关系2.【答案】B; 【解析】点E在反比例函数的图象上,点F在反比例函数的图象上,且,k1=OAEA,k2=OAFA,这两个函数的图象不关于x轴对称,即错误;点E在反比例函数y1=的图象上,点F在反比例函数y2=的图象上,SOAE=k1,SOAF=k2,SOEF=SOAE+SOAF=(k1k2),即正确;由可知,错误;设EA=5
6、a,OA=b,则FA=3a,由勾股定理可知:OE=,OF=EOF=90,OE2+OF2=EF2,即25a2+b2+9a2+b2=64a2,b2=15a2,=,正确综上可知:正确的结论有3.【答案】B;【解析】若式子有意义,则x1,错误;由=27得的补角是=180-27=153,正确. 把x=2 代入方程x2-6x+c=0得4-62+c=0,解得c=8,正确;反比例函数中,若x0 时,y 随x 的增大而增大,得:k-20,k2,错误.故选B.二、填空题4.【答案】-2x1;【解析】本题考查不等式与比较函数值的大小之间的关系5.【答案】,;【解析】顶点在直线y-4上,m1此函数解析式为:,6.【答
7、案】;【解析】抛物线开口朝下,a0,对称轴x=1,b0,抛物线与y轴的交点在x轴的上方,c0,abc0,故正确;根据图象知道当x=2时,y=4a+2b+c0,故正确;根据图象知道抛物线与x轴有两个交点,b24ac0,故错误;根据图象知道当x=1时,y=ab+c0,a+cb,故正确;对称轴x=1,b=2a,a+2b+c=3a+c,a0,c0,a+2b+c=3a+c0,故正确故答案为:三、解答题7.【答案与解析】(1)证明:由题意得m0,=(m+1)24m1=(m1)20,此方程总有两个实数根;(2)解:方程的两个实数根为x=,x1=1,x2=,方程的两个实数根都是整数,且m为整数,m=1;(3)
8、由(2)知,m=1抛物线y=mx2(m+1)x+1的开口向上,m=1,则该抛物线的解析式为:y=x22x+1=(x1)2易求得A(1,0),B(0,1)如图,点B关于直线y=x的对称点C的坐标为(1,0),连接AC,与直线y=x的交点即为符合条件的点P此时点P与原点重合,则P(0,0)所以PA+PB=AC=28. 【答案与解析】 (1)设ykx,当x1时,y2,解得k2,y2x(0x20)(2)当0x4时,设ya(x-4)2+16由题意,a-1,y-(x-4)2+16,即当0x4时,当4x10时,y16(3)设小迪用于回顾反思的时间为x(0x10)分钟,学习收益总量为y,则她用于解题的时间为(
9、20-x)分钟当0x4时,当x3时,当4x10时,y16+2(20-x)56-2xy随x的增大而减小,因此当x4时,综上,当x3时,此时20-x17答:小迪用于回顾反思的时间为3分钟,用于解题的时间为17分钟时,学习收益总量最大9【答案与解析】解:(1)因为点P、Q在抛物线上且纵坐标相同,所以P、Q关于抛物线对称轴对称并且到对称轴距离相等所以抛物线对称轴,所以(2)由(1)可知,关于的一元二次方程为=0因为,=16-8=80所以,方程有两个不同的实数根,分别是 ,(3)由(1)可知,抛物线的图象向上平移(是正整数)个单位后的解析式为若使抛物线的图象与轴无交点,只需无实数解即可由=0,得又是正整
10、数,所以的最小值为210【答案与解析】 解:(1)将原方程整理,得,=0 或 (2)由(1)知,抛物线与轴的交点分别为(m,0)、(4,0),A在B的左侧,.A(m,0),B(4,0).则,ADBD=10,AD2BD2=100. 解得.,.,.抛物线的解析式为.(3)答:存在含有、y、y,且与a无关的等式,如:(答案不唯一). 证明:由题意可得,.左边=.右边=4=.左边=右边.成立. 中考冲刺:代数综合问题巩固练习(提高)【巩固练习】一、选择题1. 如图,已知在直角梯形AOBC中,ACOB,CBOB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、B
11、C的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是 ( ) A点G B点E C点D D点F2已知函数y=,若使y=k成立的x值恰好有三个,则k的值为 ( ) A0B1C2D33.(2016秋重庆校级月考)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(1,0),下列结论:abc0;4acb2=0;a2;4a2b+c0其中正确的个数是()A1 B2 C3 D4二、填空题4若a+b-2-4=3- c-5,则a+b+c的值为 .5已知关于x的方程x2+(k-5)x+9=0在1x2内有一实数根,则实数k的取值范围是 6.(和平区
12、校级期中)关于x的方程,2kx2-2x-3k=0的两根一个大于1,一个小于1,则实数k的的取值范围是 .三、解答题7(2016梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2(1)求实数k的取值范围(2)若方程两实根x1、x2满足x1+x2=x1x2,求k的值8. 已知关于的一元二次方程(1)求证:不论取何值时,方程总有两个不相等的实数根 (2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解(3)在(2)的条件下,将抛物线绕原点旋转,得到图象,点为轴上的一个动点,过点作轴的垂线,分别与图象、交于两点,当线段的长度最小时,求点的坐标9. 抛
13、物线,a0,c0,(1)求证:;(2)抛物线经过点,Q 判断的符号; 若抛物线与x轴的两个交点分别为点A,点B(点A在点B左侧),请说明,10. 已知:二次函数y=(1)求证:此二次函数与x轴有交点;(2)若m-1=0,求证方程有一个实数根为1;(3)在(2)的条件下,设方程的另一根为a,当x=2时,关于n 的函数与的图象交于点A、B(点A在点B的左侧),平行于y轴的直线L与、的图象分别交于点C、D,若CD=6,求点C、D的坐标.【答案与解析】一、选择题1.【答案】A;【解析】在直角梯形AOBC中ACOB,CBOB,OB=18,BC=12,AC=9点A的坐标为(9,12)点G是BC的中点点G的
14、坐标是(18,6)912=186=108点G与点A在同一反比例函数图象上,故选A 2.【答案】D;【解析】函数y=的图象如图:根据图象知道当y=3时,对应成立的x有恰好有三个,k=3故选D3.【答案】B;【解析】抛物线开口朝上,a0抛物线的对称轴为x=1,b=2a0当x=0时,y=c+22,c0abc0,错误;抛物线与x轴只有一个交点,b24a(c+2)=b24ac8a=0,b24ac=8a0,错误;抛物线的顶点为(1,0),抛物线解析式为y=a(x+1)2=ax2+2ax+a=ax2+bx+c+2,a=c+22,正确;b=2a,c0,4a2b+c=c0,正确故选B二、填空题4.【答案】20;
15、【解析】整理得:(a-1-2+1)+(b-2-4+4)+(c-3-6+9)=0(-1)2+(-2)2+(-3)2=0,=1,=2,=3,a1,b2,c3,a=2,b=6,c=12,a+b+c=20故答案为:205.【答案】【解析】利用数形结合的方法将问题转化成二次函数y= x2+(k-5)x+9图象开口向上,与x轴的一个交点的横坐标在1x2内,故有两种情况,分析得出结论.6.【答案】k0或k-2.【解析】设y=2kx2-2x-3k,方程2kx2-2x-3k=0d的两根一个大于1,一个小于1,当k0,抛物线开口向上,x=1时,y0,即2k-2-3k0,解得k-2,k0当k0,抛物线开口向下,x=
16、1时,y0,即2k-2-3k0,解得k-2. k-2k的取值范围为:k0或k-2.三、解答题7【答案与解析】解:(1)原方程有两个不相等的实数根,=(2k+1)24(k2+1)0,解得:k,即实数k的取值范围是k;(2)根据根与系数的关系得:x1+x2=(2k+1),x1x2=k2+1,又方程两实根x1、x2满足x1+x2=x1x2,(2k+1)=(k2+1),解得:k1=0,k2=2,k,k只能是28【答案与解析】(1)证明: 不论取何值时,即不论取何值时,方程总有两个不相等的实数根 (2)将代入方程,得 再将代入,原方程化为,解得 (3)将代入得抛物线:,将抛物线绕原点旋转得到的图象的解析
17、式为: 设,则, 当时,的长度最小,此时点的坐标为 9【答案与解析】(1)证明: , a0,c0, , (2)解: 抛物线经过点P,点Q, ,a0,c0, , 0 0 由a0知抛物线开口向上 , 点P和点Q分别位于x轴下方和x轴上方 点A,B的坐标分别为A,B(点A在点B左侧), 由抛物线的示意图可知,对称轴右侧的点B的横坐标满足(如图所示) 抛物线的对称轴为直线,由抛物线的对称性可,由(1)知, ,即 10【答案与解析】(1)证明:令,则有= ,0 二次函数y=与x轴有交点 (2)解:解法一:由,方程可化为 解得: 方程有一个实数根为1 解法二:由,方程可化为 当x=1时,方程左边=1+(n
18、-2)+1-n=0方程右边=0左边=右边 方程有一个实数根为1 (3)解:方程的根是: 当=2时, 设点C()则点D()CD=6 , C、D两点的坐标分别为C(3,4),D(3,-2)或C(-1,0),D(-1,-6)中考冲刺:代数综合问题知识讲解(基础)【中考展望】初中代数综合题,主要以方程、函数这两部分为重点,因此牢固地掌握方程与不等式的解法、一元二次方程的解法和根的判别式、函数的解析式的确定及函数性质等重要基础知识,是解好代数综合题的关键在许多问题中,代数和几何问题交织在一起,就要沟通这些知识之间的内在联系,以数形结合的方法找到解决问题的突破口通过解综合题有利于透彻和熟练地掌握基础知识和
19、基本技能,更深刻地领悟数学思想方法,提高分析问题和解决问题的能力【方法点拨】 (1)对“数学概念”的深刻理解是解综合题的基础;(2)认识综合题的结构是解综合题的前提;(3)灵活运用数学思想方法是解综合题的关键;(4)帮助学生建立思维程序是解综合题的核心* 审题(读题、断句、找关键);* 先宏观(题型、知识块、方法); 后微观(具体条件,具体定理、公式)* 由已知,想可知(联想知识); 由未知,想须知(应具备的条件),注意知识的结合;* 观察挖掘题目结构特征; 联想联系相关知识网络; 突破抓往关键实现突破; 寻求学会寻求解题思路(5)准确计算,严密推理是解综合题的保证【典型例题】类型一、方程与不
20、等式综合1已知方程组的解满足 求a的取值范围【思路点拨】本题考查了含字母系数的方程解法及利用不等式组求字母的取值范围问题【答案与解析】解:32得:y13a443得:x18a5由题意令x0,y0得:.【总结升华】在解含字母系数的方程时要分清未知数和字母常数,这样才能更准确地对方程进行求解2m为何值时,是完全平方式?【思路点拨】本题直观考查完全平方式的特征,但是因为代数式的定性衍生出方程,不定性衍生出函数,所以完全平方式形式在方程和函数中又被赋予了独有的含义因此,本题也可以看作是间接考查了对完全平方式不同角度的理解【答案与解析】 解:解法1:待定系数法 设原式x-(m-2)2x2-2(m-2)x+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024年中考数学冲刺:代数综合问题-巩固练习基础 2024 年中 数学 冲刺 代数 综合 问题 巩固 练习 基础
限制150内