2023-2024学年福州市高三年级4月末质量检测数学参考答案.pdf
《2023-2024学年福州市高三年级4月末质量检测数学参考答案.pdf》由会员分享,可在线阅读,更多相关《2023-2024学年福州市高三年级4月末质量检测数学参考答案.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 参考答案 第 1 页 共 9 页 20232024 学年福州市高三年级 4 月份质量检测 参考答案与评分细则 一、一、选择题:本大题考查基础知识和基本运算每小题 5 分,满分 40 分.1D 2C 3A 4C 5D 6B 7B 8A 二、选择题:本大题考查基础知识和基本运算每小题 6 分,满分 18 分全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分 9ABC 10BC 11ACD 三、填空题:本大题考查基础知识和基本运算每小题 5 分,满分 15 分 122 138 146,22 四、解答题:本大题共 5 小题,共 77 分解答应写出文字说明、证明过程或演算步骤 15.【考查意
2、图】本小题主要考查递推数列与数列求和等基础知识,考查运算求解能力、推理论证能力等;考查分类与整合、化归与转化等思想方法;考查数学运算、逻辑推理等核心素养;体现基础性和综合性.满分 13 分.解:(1)因为12,2nnaan n=+?,所以12nnaan=,1 分 当2n?时,112211()()()nnnnnaaaaaaaa=+L,所以22242nann=+L,3 分 所以(22),22nnnan+=?,所以2,2nann n=+?,4 分 又因为12a=,5 分 所以2*,nann n=+N.6 分(2)由(1)可知2*(1),nannn nn=+=+N,7 分 所以()111111nan
3、nnn=+,9 分 所以11111 22 3(1)(1)nSnnn n=+L 1111111122311nnnn=+L,11 分 所以111nSn=+,12 分 又因为1n?,所以1nS.13 分 参考答案 第 2 页 共 9 页 16.【考查意图】本小题主要考查正态分布、全概率公式、条件概率等基础知识,考查数学建模能力、逻辑思维能力和运算求解能力等,考查分类与整合思想、概率与统计思想等,考查数学建模、数据分析、数学运算等核心素养,体现基础性、综合性和应用性满分 15 分.解:(1)依题意得,0,0.2=,1 分 所以零件为合格品的概率为(0.60.6)(33)0.9973PXPX=+=,2
4、分 零件为优等品的概率为(0.20.2)()0.6827PXPX=+=,3 分 所以零件为合格品但非优等品的概率为0.99730.68270.3146P=,5 分 所以从该生产线上随机抽取 100 个零件,估计抽到合格品但非优等品的个数为100 0.314631.6 分(2)设从这批零件中任取 2 个作检测,2 个零件中有 2 个优等品为事件 A,恰有 1 个优等品,1 个为合格品但非优等品为事件B,从这批零件中任取 1 个检测是优等品为事件C,这批产品通过检测为事件D,8 分 则 DABC=+,且A与BC互斥,9 分 所以()()()P DP AP BC=+10 分()()(|)P AP B
5、 P C B=+11 分 221220.68270.68270.31460.6827CC=+21.6292 0.6827=,12 分 所以这批零件通过检测时,检测了 2 个零件的概率为()(|)()P ADP A DP D=13 分 220.68271.62920.6827=11.6292=0.61.15 分 答:这批零件通过检测时,检测了 2 个零件的概率约为0.61.17.【考查意图】本小题主要考查直线与平面平行的判定定理、直线与平面垂直的判定与性质定理、平面与平面的夹角、空间向量、三角函数的概念等基础知识,考査直观想象能力、逻辑推理能力、运算求解能力等,考查数形结合思想、化归与转化思想等
6、,考査直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性.满分 15 分.解法一:(1)在正方形 ABEF 中,连接 AH 并延长,交BE 的延长线于点K,连接 PK.2 分 参考答案 第 3 页 共 9 页 因为,G H分别为线段,AP EF中点,所以HFHE=,所以RtAFHRtKEH,所以 AHKH=,4 分 所以GHPK.5 分 又因为,GHBCE PKBCE面面,所以GHBCE面.7 分(2)依题意得,ABBCE 面,又因为BPBCE 面,所以 ABBP.又因为BPAE,ABAEA=I,AB AEABEF 面,所以BPABEF 面,8 分 又BEABEF 面,所以BPBE,9
7、 分 所以,BP BE BA两两垂直.以 B 为原点,,BP BE BA所在直线分别为,x y z轴建立空间直角坐标系,如图所示.10 分 不妨设1AB=,则31(1,0,0),(,1)22PD,()31=1,0,0,122BPBD=uuu ruuu r,11 分 设平面BPD 的法向量为(),x y z=m,则0,0,BPBD=uuu ruuu rmm 即0,310,22xxyz=+=取2y=,得0,1xz=,所以平面BPD 的一个法向量是()0,2,1=m,13 分 又平面BPA的一个法向量为()0,1,0=n.14 分 设平面BPD 与平面BPA的夹角为,则22 5coscos,55 1
8、=m nm nm n.KFEPCDHAGBzyxBGAHDCPEF 参考答案 第 4 页 共 9 页 所以平面DBP 与平面BPA夹角的余弦值为2 55.15 分 解法二:(1)证明:取BP的中点Q,连接,GQ EQ.1 分 因为,G H分别为线段,AP EF的中点,所以GQAB,12GQAB=,2 分 又因为,ABEF ABEF=,所以,GQHE GQHE=,3 分 所以四边形GQEH是平行四边形,4 分 所以GHQE,5 分 又因为,GHBCE QEBCE面面,所以GHBCE面.7 分(2)同解法一.15 分 解法三:(1)证明:取 AB 的中点 I,连接,GI HI.1 分 因为,G H
9、分别为线段,AP EF的中点,所以,GIBP HIEB,又因为,GIBCE BPBCE面面,所以GIBCE面.3 分 因为,HIBCE BEBCE面面,所以HIBCE面.5 分 又因为,GIHII GIGIH HIGIH=I面面,所以GIHBCE面面,6 分 又因为GHGIH 面,所以GHBCE面.7 分(2)同解法一.15 分 18.【考查意图】本小题主要考查圆、椭圆的标准方程及简单几何性质,直线与椭圆的位置关系等基础知识,考査直观想象能力、逻辑推理能力、运算求解能力等,考查数形结合思想、化归与转化思想、分类与整合思想等,考査直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性与创新性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 2024 学年 福州市 三年级 月末 质量 检测 数学 参考答案
限制150内