计量经济学-重点难点总结.pdf
《计量经济学-重点难点总结.pdf》由会员分享,可在线阅读,更多相关《计量经济学-重点难点总结.pdf(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章第一章 1、计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。计量经济学与理论经济学、数理经济学、经济统计学、数理统计学既有区别又有联系。2、计量经济研究分为模型设定、参数估计、模型检验、模型运用等四个步骤。3、模型的设定主要是选择变量和确定变量间联系的数学形式。适于对实际经济活动作计量分析的计量经济模型应包含经济变量、待确定的参数和随机误差项。行为方程、技术方程、制度方程和定义方程可作为建立模型时参考。4、计量经济模型中的变量分为被解释变量(应变量)和解释变量、内生变量和外生变量。5、参数是计量经济模型中表现经
2、济变量相互依存程度的因素,通常具有相对稳定性。参数无法直接观测和计算,只能用适当的方法根据变量的样本观测值去估计。参数估计的方法应符合“尽可能地接近总体参数真实值”的准则。6、计量经济研究中应用的数据包括时间序列数据、截面数据、面板数据、虚拟变量数据等。7、对模型检验包括经济意义检验、统计推断检验、计量经济学检验和模型预测检验。8、计量经济模型主要可应用于经济结构分析、政策评价和经济预测。第二章第二章 1、变量间的关系分为函数关系与相关关系。相关系数是对变量间线性相关程度的度量。2、现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均
3、值。简单线性回归模型是只有一个解释变量的线性回归模型。3、总体回归函数(PRF)是将总体被解释变量Y的条件均值()iiE Y X表现为解释变量X的某种函数。样本回归函数(SRF)是将被解释变量Y的样本条件均值iY4、随机扰动项表示为解释变量X的某种函数。总体回归函数与样本回归函数的区别与联系。iu是被解释变量实际值iY与条件均值()iiE Y X5、简单线性回归的基本假定:对模型和变量的假定、对随机扰动项 u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)的偏差,代表排除在模型以外的所有因素对Y的影响。6、普通最小二乘法(OLS)估计参数的基本思想及估
4、计式;OLS 估计式的分布性质及期望、方差和标准误差;OLS 估计式是最佳线性无偏估计式。7、对回归系数区间估计的思想和方法。8、拟合优度是样本回归线对样本观测数据拟合的优劣程度,可决系数是在总变差分解基础上确定的。可决系数的计算方法、特点与作用。9、对回归系数假设检验的基本思想。对回归系数 t 检验的思想与方法;用 P 值判断参数的显著性。10、被解释变量平均值预测与个别值预测的关系,被解释变量平均值的点预测和区间预测的方法,被解释变量个别值区间预测的方法。11、运用 EViews 软件实现对简单线性回归模型的估计和检验。第二章主要公式表第二章主要公式表 1、总体回归函数 12iiiYXu=
5、+12()iiiE Y XX=+2、样本回归函数 12iiiYXe=+12iiYX=+3、基本假定()0iE u=12()iiE YX=+2()()iiVar uVar Y=(,)()0ijijCov u uE uu=(,)0iiCov u X=2(0,)iuN 4、最小二乘估计 222()iiiiiiNX YXYNXX=2iiix yx=2122()iiiiiiiXYXX YNXX=12YX=5、参数 OLS 估计式的期望()kkE=6、参数 OLS 估计式的方差 222()iVarx=2212()iiXVarNx=7、参数估计式的标准误差 22()iSEx=212()iiXSENx=8、的
6、无偏估计 222ien=9、t 检验统计量*22222(2)()()tt nSESE=8、样本可决系数 22221iiiyeyy=+222iyry=2221iiery=9、参数估计的置信区间 2222222()()1PtSEtSE+=10、平均值预测区间 2222221()1(),FFFFiiXXXXYtYtnxnx+11、个别值预测区间 2221()1FFFiXXYYtnx=+2第三章第三章 1、多元线性回归模型是将总体回归函数描述为一个被解释变量与多个解释变量之间线性关系的模型。通常多元线性回归模型可以用矩阵形式表示。2、多元线性回归模型中对随机扰动项 u 的假定,除了零均值假定、同方差假
7、定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式。4、多元线性回归模型中参数区间估计的方法。5、多重可决系数的意义和计算方法,修正可决系数的作用和方法。6、F 检验是对多元线性回归模型中所有解释变量联合显著性的检验,F 检验是在方差分析基础上进行的。7、多元回归分析中,为了分别检验当其它解释变量不变时,各个解释变量是否对被解释变量有显著影响,需要分别对所估计的各个回归系数作 t 检验。8、利用
8、多元线性回归模型作被解释变量平均值预测与个别值预测的方法。第三章主要公式表第三章主要公式表 1、多元线性回归模型 1212233(,)ikiikkiE Y XXXXXX=+12233iiikkiiYXXXu=+Y=X+U 2、样本回归函数 12233iiikkiYXXX=+12233iiikkiiYXXXe=+Y=X+e 3、基本假定 E(U)=0 2,(,)()0,ikikikCov u uE uuik=(,)0(1,2,)jiiCov Xujk=Rank(X)=k 2(0,)iuN()E=YXY=X 4、最小二乘估计 X Y=X X-1=(X X)X Y 5、参数 OLS 估计的期望=E(
9、)6、参数 OLS 估计的方差)(jVar=jjC2=2()ijjeCnk 7、参数估计的标准误差 8、的无偏估计 22ienk=9、参数估计的置信区间 221jjjjjjjPtctc+=10、多重可决系数 22211()iieRSSRTSSYY=11、修正的可决系数 22222()111()(1)()iiiienkenRYYnnkYY=12、F 检验统计量(1)(1,)()ESSkFF knkRSSnk=13、t 检验统计量*()()jjjjjjjtt nkSEc=14、点预测值 fY=fX 15、平均值预测区间 22()ffffYtE YYt+-1-1fffX(X X)XX(X X)X 1
10、6、个别值预测区间 2211fffYtYYt+-1-1ffffX(XX)XX(XX)X ()jjjSEC=2第四章第四章 1、经典线性回归模型的假定之一是各个解释变量 X 之间不存在多重共线性。一般说来,多重共线性是指各个解释变量 X 之间有准确或近似准确的线性关系。2、多重共线性的后果是:如果各个解释变量 X 之间有完全的共线性,则它们的回归系数是不确定的,并且它们的方差会无穷大。如果共线性是高度的但不完全的,则回归系数的估计是可能的,但有较大的标准误差的趋势。结果回归系数不能准确地加以估计。不过,如果目的是估计这些系数的线性组合用于预测,多重共线性不是严重问题。3、诊断共线性的经验方法主要
11、有:(1)多重共线性的明显表现是可决系数 R2 异常高而回归系数在通常的 t 检验中在统计上不显著。(2)在仅有两个解释变量的模型中,检查两个变量之间的零阶或简单相关系数,一般说来高的相关系数通常可认为有多重共线性。(3)当模型中涉及多于两个解释变量的情形时,较低的零阶相关也可能出现多重共线性,这时需要检查偏相关系数。(4)如果 R2 高而偏相关系数低,则多重共线性是可能的,这时会存在一个或多个解释变量是多余的。如果 R2 高而偏相关系数也高,则多重共线性难以识别。(5)在建模时,首先可以将每一个解释变量iX对其余所有解释变量进行辅助回归,并计算出相应的可决系数2iR。较高的2iR可能表明iX
12、和其余的解释变量高度相关,在不会引起严重的设定偏误的前提下,可考虑把iX从模型中剔除。4、降低多重共线性的经验方法有:(1)利用外部或先验信息;(2)横截面与时间序列数据并用;(3)剔除高度共线性的变量;(4)数据转换;(5)获取补充数据或新数据;(6)选择有偏估计量(如岭回归)。经验方法的效果取决于数据的性质和共线性的严重程度。第四章主要公式表第四章主要公式表 方差膨胀因子(简称 VIF)()22311rVIF=多重共线性下参数估计式的方差()VIFxi=2222var jjjjjVIFxRxVar=2222211)(特征根的病态指数 k,0,1,2,i ,=imiCI 的岭回归估计()()
13、YXIXX+=1kk 第五章第五章 1、异方差性是指模型中随机误差项的方差不是常量,而且它的变化与解释变量的变动有关。2、产生异方差性的主要原因有:模型中略去的变量随解释变量的变化而呈规律性的变化、变量的设定问题、截面数据的使用,利用平均数作为样本数据等。3、存在异方差性时对模型的 OLS 估计仍然具有无偏性,但最小方差性不成立,从而导致参数的显著性检验失效和预测的精度降低。4、检验异方差性的方法有多种,常用的有图形法、Goldfeld-Qunandt 检验、White 检验、ARCH 检验以及 Glejser 检验,运用这些检验方法时要注意它们的假设条件。5、修正异方差性的主要方法是加权最小
14、二乘法,也可以用变量变换法和对数变换法。变量变换法与加权最小二乘法实际是等价的。第五章主要公式表第五章主要公式表 异方差性 2)(iiuVar=Goldfeld-Qunandt 检验 的 F 统计量=21222122*2/2/iiiieekcnekcneF White 检验中的辅助函数(原模型只有两个解释变量)222122334253623tttttttexxxxx x=+ARCH 检验中的辅助函数 222011ttp tpeee=+Glejser 检验中常用的辅助函数 vXevXevXevXevXe+=+=+=+=+=;1;1;一元函数下的加权最小二乘估计=2*2*2*1)()(XXwYYX
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 重点难点 总结
限制150内