2019年全国统一高考数学试卷(文科)(新课标Ⅰ)(含解析).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2019年全国统一高考数学试卷(文科)(新课标Ⅰ)(含解析).doc》由会员分享,可在线阅读,更多相关《2019年全国统一高考数学试卷(文科)(新课标Ⅰ)(含解析).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年全国统一高考数学试卷(文科)(新课标)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1. 设,则=A. 2B. C. D. 12. 已知集合,则A. B. C. D. 3. 已知,则A. B. C. D. 4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175
2、cmC. 185 cmD. 190cm5. 函数f(x)=在,的图像大致为A B. C D. 6. 某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A. 8号学生B. 200号学生C. 616号学生D. 815号学生7. tan255=A. 2B. 2+C. 2D. 2+8. 已知非零向量满足,且,则与的夹角为A. B. C. D. 9. 如图是求的程序框图,图中空白框中应填入A. A=B. A=C. A=D. A=10. 双曲线C:的 一条渐近线的倾斜角为13
3、0,则C的离心率为A. 2sin40B. 2cos40C. D. 11. ABC的内角A,B,C的对边分别为a,b,c,已知asinAbsinB=4csinC,cosA=,则=A. 6B. 5C. 4D. 312. 已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,则C的方程为A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。13. 曲线在点处的切线方程为_14. 记Sn为等比数列an的前n项和.若,则S4=_15. 函数的最小值为_16. 已知ACB=90,P为平面ABC外一点,PC=2,点P到ACB两边AC,BC的距离均为,那么P到平面ABC的距离为_三、解答题
4、:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17. 某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:P(K2k)0.0500.0100.001k3.8416.63510.82818. 记Sn为等差数列an前n项和,已知S9=a5(1)若a3=4,求an的通
5、项公式;(2)若a10,求使得Snan的n的取值范围19. 如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN平面C1DE;(2)求点C到平面C1DE的距离20. 已知函数f(x)=2sinxxcosxx,f(x)为f(x)的导数(1)证明:f(x)在区间(0,)存在唯一零点;(2)若x0,时,f(x)ax,求a的取值范围21. 已知点A,B关于坐标原点O对称,AB =4,M过点A,B且与直线x+2=0相切(1)若A在直线x+y=0上,求M的半径(2)是否存在定点P,使得当A运动时,MAMP为定值
6、?并说明理由(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。22. 在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值23. 已知a,b,c正数,且满足abc=1证明:(1);(2)绝密启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,
7、再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1. 设,则=A. 2B. C. D. 1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得,再求【详解】因为,所以,所以,故选C【点睛】本题主要考查复数的乘法运算,复数模的计算本题也可以运用复数模的运算性质直接求解2. 已知集合,则A. B. C. D. 【答案】C【解析】【分析】先求,再求【详解】由已知得,所以,故选C【点睛】本题主要考查交集、补集的运算渗透了直观
8、想象素养使用补集思想得出答案3. 已知,则A. B. C. D. 【答案】B【解析】分析】运用中间量比较,运用中间量比较【详解】则故选B【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养采取中间变量法,利用转化与化归思想解题4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 19
9、0cm【答案】B【解析】分析】理解黄金分割比例的含义,应用比例式列方程求解【详解】设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则,得又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为4207+515+105+26=17822,接近175cm故选B【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养采取类比法,利用转化思想解题5. 函数f(x)=在,的图像大致为A. B. C. D. 【答案】D【解析】【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案【详解】由,得是奇函数,其图象关于原点对称又故选D【点睛】本
10、题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养采取性质法或赋值法,利用数形结合思想解题6. 某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A. 8号学生B. 200号学生C. 616号学生D. 815号学生【答案】C【解析】【分析】等差数列的性质渗透了数据分析素养使用统计思想,逐个选项判断得出答案【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,
11、公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意故选C【点睛】本题主要考查系统抽样.7. tan255=A. 2B. 2+C. 2D. 2+【答案】D【解析】【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解题目较易,注重了基础知识、基本计算能力的考查【详解】详解:=【点睛】三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力8. 已知非零向量满足,且,则与的夹角为A. B. C. D. 【答案】B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数
12、学计算等数学素养先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为9. 如图是求的程序框图,图中空白框中应填入A. A=B. A=C. A=D. A=【答案】A【解析】【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择【详解】执行第1次,是,因为第一次应该计算=,=2,循环,执行第2次,是,因为第二次应该计算=,=3,
13、否,输出,故循环体为,故选A【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为10. 双曲线C:的 一条渐近线的倾斜角为130,则C的离心率为A. 2sin40B. 2cos40C. D. 【答案】D【解析】【分析】由双曲线渐近线定义可得,再利用求双曲线的离心率【详解】由已知可得,故选D【点睛】对于双曲线:,有;对于椭圆,有,防止记混11. ABC的内角A,B,C的对边分别为a,b,c,已知asinAbsinB=4csinC,cosA=,则=A. 6B. 5C. 4D. 3【答案】A【解析】【分析】利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【详解】详
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 全国 统一 高考 数学试卷 文科 新课 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内