2024届四川省绵阳南山中学高三下学期高考仿真演练(一)理科数学试题含答案.pdf
《2024届四川省绵阳南山中学高三下学期高考仿真演练(一)理科数学试题含答案.pdf》由会员分享,可在线阅读,更多相关《2024届四川省绵阳南山中学高三下学期高考仿真演练(一)理科数学试题含答案.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学科网(北京)股份有限公司第 1 页 共 5 页绵阳南山中学高绵阳南山中学高 2021 级高三下期高考仿真演练级高三下期高考仿真演练 1 试题试题理科数学理科数学命题人:一、选择题:本大题共A一、选择题:本大题共A 12 个小题,每小题A个小题,每小题A 5 分,共A分,共A 60 分。在每小题给出的四个选项中,分。在每小题给出的四个选项中,只有一项是符合题目要求的。只有一项是符合题目要求的。1已知全集0log|2xxU,集合023|2xxxA,则ACU()A),(2)1,(B),2 C.),2(D),2 1,(2设复数z的共轭复数为z,且满足5izz,则z可以是()Ai1Bi1CiDi3已知
2、函数xaeexfxxcos)()(是奇函数,则实数a()A1B1C2D24在区间2,2上随机取一个实数a,使xaxxfsin)(在R上单调递增的概率是()A31B32C43D415已知某几何体的三视图如图所示,该几何体最长的棱为3,则该几何体的体积为()A.31B32C.61D216如图,在棱长为 2 的正方体1111DCBAABCD中,1O是正方体上底面的中心,P是11CB的中点,则1PO与平面11BCA所成角的正切值为()A21B22C2D27将 2 名医生和甲、乙、丙、丁 4 名护士分成 2 个小组,分别安排到两个社区参加义诊活动,每个社区有 1 名医生和 2 名护士,其中甲乙不在同一小
3、组,则不同的分配方法有()种.A6B8C10D12俯视图学科网(北京)股份有限公司第 2 页 共 5 页8关于函数21coscossin3)(2xxxxf,有下列命题:)(xf的最小正周期为;函数)(xf的图象关于0,12对称;)(xf在区间23,上单调递增;将函数)(xf的图象向右平移125个单位长度后所得到的图象与函数xy2sin的图象重合其中正确的为()ABCD9 已知函数 ,0,3,3ln,0,xexf xg xxf g xg xx x 方程有两个不同的根,分别是1212,x xxx则()A.0 B.3 C.6 D.910过双曲线2222:1(0,0)xyCabab的左焦点1F的直线l
4、(斜率为正)交双曲线于BA,两点,满足113FBF Auuuruuur,设M为AB的中点,则直线OM(O为坐标原点)斜率的最小值是()A2 6B3C4 3D511已知数列 na的各项均为正数,nnnnaaaaa1111,1,若 x表示不超过x的最大整数,则 10021aaa()A615B620C625D63012若函数xxxfaa)1(loglog)(在),(0上单调递增,则a不可能的取值为()Ae1B22lnC6.1lnD2e二、填空题:本大题共二、填空题:本大题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分。分。13若yx,满足约束条件,0102yxyxx则yxz2的最小值为
5、 学科网(北京)股份有限公司第 3 页 共 5 页14已知非零向量ba,满足ba 2,且),(baa则ba,的夹角大小为 15已知等比数列 na的前n项和为nS,若tSn2115n,则naaa21取最大值时,n的值为 16已知圆13:22)(yxC,点P在抛物线yxT4:2上运动,过点P作圆C的切线21,ll,切点分别为BA,,则四边形PACB面积最小值为 三、解答题:本大题共三、解答题:本大题共 6 小题,共小题,共 70 分。解答应写出文字说明、证明过程或演算步骤。分。解答应写出文字说明、证明过程或演算步骤。(一)必考题:共(一)必考题:共 60 分分17数学来源于生活,当然也服务于生活。
6、某学校兴趣小组针对“当地某一零售超市夏天如何配备冷饮”的问题,做了一系列研究。经研究发现,“冷饮的需求量(单位:杯)”与“当天的气温(单位:C)”线性相关。根据统计,小组随机抽取了该超市 6 天销量情况与当天的气温,对应关系如下表:气温 x(C)171923293335销量 y(杯)788796110134149(1)经过计算,得到当天的气温x与销量y满足回归方程mxy6.3 若今天的气温为31C,则该超市可以配备多少杯冷饮?(2)为了进一步详细研究这种变化规律,该小组又从这 6 天中随机选取 3 天,记X为销量不低于 110 杯的天数,求X的分布列和数学期望18已知在ABC中,D 为 BC
7、边的中点,且5AD.(1)若ABC的面积为2,55cosADC,求B;(2)若1822 ACAB,求ABC的周长的最大值.19.在四棱锥ABCDP中,底面ABCD为平行四边形,2AB,120ABC,7 PCPA,5PB,ACPB(1)证明:平面PAC平面PBD;(2)E是侧棱PB上一点,记)(10PBPE,是否存在实数学科网(北京)股份有限公司第 4 页 共 5 页,使平面ADE与平面ABCD所成的二面角为60?若存在,求出的值;若不存在,请说明理由20已知函数axxxxf)1ln(sin2)(1)当2a时,求函数)(xf在区间20,上零点的个数;(2)若0 x时,不等式0)(xf恒成立,求实
8、数a的取值范围21已知椭圆2222122222:10:10 xyyxCabCbtabbt 和椭圆组合成的曲线G如图 1 所示,根据图形特点,称曲线G为“猫眼曲线”.特别地,若两个椭圆离心率相等,则称为“优美猫眼曲线”.(1)已知“猫眼曲线”G满足tba,成等比数列,公比为22,判断此时曲线G是否为“优美猫眼曲线”.若曲线G经过点0,2G,求出组成这个曲线G的两个椭圆的标准方程.(2)对于(1)中所求的“猫眼曲线”G,作直线l(斜率为k,且0k).若直线l不经过原点 O,且与组成G的两个椭圆都相交,交椭圆1C所得弦的中点为M,交椭圆2C所得弦的中点为N,如图 1 所示,OMONkk是否为与k无关
9、的定值?若是,求出该定值;若不是,请说明理由.若直线l的斜率2,kl与椭圆2C相切,交椭圆1C于BA,两点,Q 为椭圆1C上与BA,不重合的任意一点,如图 2 所示,求ABQ面积的最大值.学科网(北京)股份有限公司第 5 页 共 5 页(二)选考题:共(二)选考题:共 10 分分.请考生在第请考生在第 22、23 题中任选一题作答题中任选一题作答.如果多做,则按所做的第一题计分如果多做,则按所做的第一题计分.22第十四届全国冬季运动会于 2 月 17 日在内蒙古呼伦贝尔开幕,这是继北京冬奥会后全国举办的又一冬季项目大型体育赛事,也是内蒙古首次承办的全国大型综合体育盛会。本次赛事共设 8 个大项
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 四川省 绵阳 南山 中学 下学 高考 仿真 演练 理科 数学试题 答案
限制150内