广东省深圳市2024届高三下学期二模数学试题 Word版含答案.docx
《广东省深圳市2024届高三下学期二模数学试题 Word版含答案.docx》由会员分享,可在线阅读,更多相关《广东省深圳市2024届高三下学期二模数学试题 Word版含答案.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、试卷类型:A2024年深圳市高三年级第二次调研考试数学2024.4本试卷共4页,19小题,满分150分。考试用时120分钟。注意事项:1答题前,考生请务必用黑色字迹钢笔或签字笔将自己的姓名、准考证号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。3非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅
2、笔和涂改液。不按以上要求作答的答案无效。4考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知n为正整数,且,则ABCD2已知正方体,过点A且以为法向量的平面为,则截该正方体所得截面的形状为A三角形B四边形C五边形D六边形3对于任意集合M,N,下列关系正确的是ABCD4已知,且,则函数的图象一定经过A一、二象限B一、三象限C二、四象限D三、四象限5已知,其中为虚数单位,则ABCD6、已知某六名同学在CMO竞赛中获得前六名(无并列情况),其中甲或乙是第一名,丙不是前三名,则这六名同
3、学获得的名次情况可能有A72种B96种C144种D288种7P是椭圆C:()上一点,、是C的两个焦点,点Q在的平分线上,O为原点,且则C的离心率为ABCD8设函数,若存在,使得,则的最小值为AB1C2De二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。9已知m,n是异面直线,那么A当,或时,B当,且时,C当时,或D当,不平行时,m与不平行,且n与不平行10,已知函数(,)的最大值为2,其部分图象如图所示,则AB函数为偶函数C满足条件的正实数,存在且唯一D是周期函数,且最小正周期为11设函数的函数值表
4、示不超过x的最大整数,则在同一个直角坐标系中,函数的图象与圆()的公共点个数可以是A1个B2个C3个D4个三、填空题:本题共3小题,每小题5分,共15分。12已知样本,的平均数为2,方差为1,则,的平均数为 13已知圆锥的内切球半径为1,底面半径为,则该圆锥的表面积为 注:在圆锥内部,且与底面和各母线均有且只有一个公共点的球,称为圆锥的内切球14已知ABC中,双曲线E以B,C为焦点,且经过点A,则E的两条渐近线的夹角为 ;的取值范围为 四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。15(13分)如图,三棱柱中,侧面底面ABC,且,(1)证明:平面ABC;(2)若,
5、求平面与平面夹角的余弦值16(15分)已知函数,是的导函数,且(1)若曲线在处的切线为,求k,b的值;(2)在(1)的条件下,证明:17(15分)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X,求X的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标已知在甲工厂提高质量指标的条件下,该大型企业把零
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省深圳市2024届高三下学期二模数学试题 Word版含答案 广东省 深圳市 2024 届高三 下学 期二模 数学试题 Word 答案
限制150内